[1] | Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510 | Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells
[2] | Martı́n D and Algora C 2004 Semicond. Sci. Technol. 19 1040 | Temperature-dependent GaSb material parameters for reliable thermophotovoltaic cell modelling
[3] | Nagashima T, Okumura K and Yamaguchi M 2007 AIP Conf. Proc. 890 174 | A Germanium Back Contact Type Thermophotovoltaic Cell
[4] | Fraas L M and Ferguson L G 2000 US Patent 6091018 |
[5] | Sulima O V and Bett A W 2001 Sol. Energy Mater. Sol. Cells 66 533 | Fabrication and simulation of GaSb thermophotovoltaic cells
[6] | Wu C, Neuner I B, John J, Milder A, Zollars B, Savoy S and Shvets G 2012 J. Opt. 14 024005 | Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems
[7] | Chan W R, Bermel P, Pilawa-Podgurski R C N, Marton C H, Jensen K F, Senkevich J J, Joannopoulos J D, Soljačić M and Celanovic I 2013 Proc. Natl. Acad. Sci. USA 110 5309 | Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics
[8] | Liao T, Cai L, Zhao Y and Chen J 2016 J. Power Sources 306 666 | Efficiently exploiting the waste heat in solid oxide fuel cell by means of thermophotovoltaic cell
[9] | Zhao B, Chen K, Buddhiraju S, Bhatt G, Lipson M and Fan S 2017 Nano Energy 41 344 | High-performance near-field thermophotovoltaics for waste heat recovery
[10] | Tervo E, Bagherisereshki E and Zhang Z M 2018 Front. Energy 12 5 | Near-field radiative thermoelectric energy converters: a review
[11] | Svetovoy V B, Van Zwol P J and Chevrier J 2012 Phys. Rev. B 85 155418 | Plasmon enhanced near-field radiative heat transfer for graphene covered dielectrics
[12] | Ilic O, Jablan M, Joannopoulos J D, Celanovic I and Soljačić M 2012 Opt. Express 20 A366 | Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems
[13] | Svetovoy V B and Palasantzas G 2014 Phys. Rev. Appl. 2 034006 | Graphene-on-Silicon Near-Field Thermophotovoltaic Cell
[14] | Basu S, Yang Y and Wang L 2015 Appl. Phys. Lett. 106 033106 | Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films
[15] | Narayanaswamy A and Chen G 2003 Appl. Phys. Lett. 82 3544 | Surface modes for near field thermophotovoltaics
[16] | Laroche M, Carminati R and Greffet J J 2006 J. Appl. Phys. 100 063704 | Near-field thermophotovoltaic energy conversion
[17] | Park K, Basu S, King W P and Zhang Z M 2008 J. Quant. Spectrosc. Radiat. Transfer 109 305 | Performance analysis of near-field thermophotovoltaic devices considering absorption distribution
[18] | Bright T J, Wang L P and Zhang Z M 2014 J. Heat Transfer 136 062701 | Performance of Near-Field Thermophotovoltaic Cells Enhanced With a Backside Reflector
[19] | Molesky S and Jacob Z 2015 Phys. Rev. B 91 205435 | Ideal near-field thermophotovoltaic cells
[20] | St-Gelais R, Bhatt G R, Zhu L, Fan S and Lipson M 2017 ACS Nano 11 3001 | Hot Carrier-Based Near-Field Thermophotovoltaic Energy Conversion
[21] | Jiang J H and Imry Y 2018 Phys. Rev. B 97 125422 | Near-field three-terminal thermoelectric heat engine
[22] | Papadakis G T, Buddhiraju S, Zhao Z, Zhao B and Fan S 2020 Nano Lett. 20 1654 | Broadening Near-Field Emission for Performance Enhancement in Thermophotovoltaics
[23] | Messina R and Ben-Abdallah P 2013 Sci. Rep. 3 1383 | Graphene-based photovoltaic cells for near-field thermal energy conversion
[24] | Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso-González P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, H J, Hillenbrand R and Koppens F H L 2015 Nat. Mater. 14 421 | Highly confined low-loss plasmons in graphene–boron nitride heterostructures
[25] | Zhao B and Zhang Z M 2017 J. Heat Transfer 139 022701 | Enhanced Photon Tunneling by Surface Plasmon–Phonon Polaritons in Graphene/hBN Heterostructures
[26] | Zhao B, Guizal B, Zhang Z M, Fan S and Antezza M 2017 Phys. Rev. B 95 245437 | Near-field heat transfer between graphene/hBN multilayers
[27] | Shi K, Bao F and He S 2017 ACS Photon. 4 971 | Enhanced Near-Field Thermal Radiation Based on Multilayer Graphene-hBN Heterostructures
[28] | Wang R, Lu J and Jiang J H 2019 Phys. Rev. Appl. 12 044038 | Enhancing Thermophotovoltaic Performance Using Graphene-BN- Near-Field Heterostructures
[29] | Polder D and Van H M 1971 Phys. Rev. B 4 3303 | Theory of Radiative Heat Transfer between Closely Spaced Bodies
[30] | Pendry J B 1999 J. Phys.: Condens. Matter 11 6621 | Radiative exchange of heat between nanostructures
[31] | Mulet J P, Joulain K, Carminati R and Greffet J J 2002 Nanoscale Microscale Thermophys. Eng. 6 209 | ENHANCED RADIATIVE HEAT TRANSFER AT NANOMETRIC DISTANCES
[32] | Whittaker D M and Culshaw I S 1999 Phys. Rev. B 60 2610 | Scattering-matrix treatment of patterned multilayer photonic structures
[33] | Zhang Z M 2007 Nano/Microscale Heat Transfer (New York: McGraw-Hill) |
[34] | Ashcroft N W and Mermin N D 1976 Solid State Physics (Philadelphia: Scientific Research) |
[35] | Shur M S 1996 Handbook Series On Semiconductor Parameters (Singapore: World Scientific) vol 1 |
[36] | Lim M, Jin S, Lee S S and Lee B J 2015 Opt. Express 23 A240 | Graphene-assisted Si-InSb thermophotovoltaic system for low temperature applications
[37] | Kumar A, Low T, Fung K H, Avouris P and Fang N X 2015 Nano Lett. 15 3172 | Tunable Light–Matter Interaction and the Role of Hyperbolicity in Graphene–hBN System
[38] | Geick R, Perry C H and Rupprecht G 1966 Phys. Rev. 146 543 | Normal Modes in Hexagonal Boron Nitride
[39] | Caldwell J D, Kretinin A V, Chen Y, Giannini V, Fogler M M, Francescato Y, Ellis C T, Tischler J G, Woods C R, Giles A J, Hong M, Watanabe K, Taniguchi T, Maier S A and Novoselov K S 2014 Nat. Commun. 5 5221 | Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride
[40] | Vakil A and Engheta N 2011 Science 332 1291 | Transformation Optics Using Graphene
[41] | Falkovsky L A 2008 J. Phys.: Conf. Ser. 129 012004 | Optical properties of graphene
[42] | Yang T R, Cheng Y, Wang J B and Feng Z C 2006 Thin Solid Films 498 158 | Optical and transport properties of InSb thin films grown on GaAs by metalorganic chemical vapor deposition
[43] | Jacob Z 2014 Nat. Mater. 13 1081 | Hyperbolic phonon–polaritons
[44] | Brar V W, Jang M S, Sherrott M, Kim S, Lopez J J, Kim L B, Choi M and Atwater H 2014 Nano Lett. 14 3876 | Hybrid Surface-Phonon-Plasmon Polariton Modes in Graphene/Monolayer h-BN Heterostructures