[1] | Ashkin A, Dziedzic J M, Bjorkholm J E and Chu S 1986 Opt. Lett. 11 288 | Observation of a single-beam gradient force optical trap for dielectric particles
[2] | Grier D G 2003 Nature 424 810 | A revolution in optical manipulation
[3] | Ashkin A, Dziedzic J M and Yamane T 1987 Nature 330 769 | Optical trapping and manipulation of single cells using infrared laser beams
[4] | Cizmar T, Romero L C D, Dholakia K and Andrews D L 2010 J. Phys. B 43 102001 | Multiple optical trapping and binding: new routes to self-assembly
[5] | Berthelot J, Acimovic S S, Juan M L, Kreuzer M P, Renger J and Quidant R 2014 Nat. Nanotechnol. 9 295 | Three-dimensional manipulation with scanning near-field optical nanotweezers
[6] | Grigorenko A N, Roberts N W, Dickinson M and Zhang Y 2008 Nat. Photon. 2 365 | Nanometric optical tweezers based on nanostructured substrates
[7] | Fang Z Y, Lin F, Huang S, Song W T and Zhu X 2009 Appl. Phys. Lett. 94 063306 | Focusing surface plasmon polariton trapping of colloidal particles
[8] | Wang K, Schonbrun E, Steinvurzel P and Crozier K B 2011 Nat. Commun. 2 469 | Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink
[9] | Tsai W, Huang J and Huang C B 2014 Nano Lett. 14 547 | Selective Trapping or Rotation of Isotropic Dielectric Microparticles by Optical Near Field in a Plasmonic Archimedes Spiral
[10] | Zhang W H, Huang L N, Santschi C and Martin O J F 2010 Nano Lett. 10 1006 | Trapping and Sensing 10 nm Metal Nanoparticles Using Plasmonic Dipole Antennas
[11] | Balushi A A A, Kotnala A, Wheaton S, Gelfand R M, Rajashekara Y and Gordon R 2015 Analyst (Amsterdam) 140 4760 |
[12] | Juan M L, Gordon R, Pang Y J, Eftekhari F and Quidant R 2009 Nat. Phys. 5 915 | Self-induced back-action optical trapping of dielectric nanoparticles
[13] | Juan M L, Righini M and Quidant R 2011 Nat. Photon. 5 349 | Plasmon nano-optical tweezers
[14] | Monroe C 2002 Nature 416 238 | Quantum information processing with atoms and photons
[15] | Fushman I, Englund D, Faraon A, Stoltz N, Petroff P and Vuckovic J 2008 Science 320 769 | Controlled Phase Shifts with a Single Quantum Dot
[16] | Yu H K, Liu B D, Wu W L and Li Z Y 2019 Acta Phys. Sin. 68 149101 (in Chinese) | Surface plasmaons enhanced light-matter interactions
[17] | Pang K W, Li H H, Song G and Yu L 2019 Chin. Phys. B 28 127301 | Strong coupling in silver-molecular J-aggregates-silver structure sandwiched between two dielectric media
[18] | Wang B, Zeng X Z and Li Z Y 2020 Photon. Res. 8 343 | Quantum versus optical interaction contribution to giant spectral splitting in a strongly coupled plasmon–molecules system
[19] | Torma P and Barnes W L 2015 Rep. Prog. Phys. 78 013901 | Strong coupling between surface plasmon polaritons and emitters: a review
[20] | Li B W, Zu S, Zhang Z P, Zheng L H, Jiang Q, Du B W, Luo Y, Gong Y J, Zhang Y F, Lin F, Shen B, Zhu X, Ajayan P M and Fang Z Y 2019 Opto-Electron. Adv. 2 190008 | Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature
[21] | Jiang P, Li C, Chen Y Y, Song G, Wang Y L and Yu L 2019 Chin. Phys. Lett. 36 107301 | Strong Exciton-Plasmon Coupling and Hybridization of Organic-Inorganic Exciton-Polaritons in Plasmonic Nanocavity *
[22] | Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370 | Optical Constants of the Noble Metals
[23] | Chikkaraddy R, Nijs B D, Benz F, Barrow S J, Scherman O A, Rosta E, Demetriadou A, Fox P, Hess O and Baumberg J J 2016 Nature 535 127 | Single-molecule strong coupling at room temperature in plasmonic nanocavities
[24] | Novotny L, Bian R X and Xie X S 1997 Phys. Rev. Lett. 79 645 | Theory of Nanometric Optical Tweezers
[25] | Ashkin A 1978 Phys. Rev. Lett. 40 729 | Trapping of Atoms by Resonance Radiation Pressure
[26] | Shoji T and Tsuboi Y 2014 J. Phys. Chem. Lett. 5 2957 | Plasmonic Optical Tweezers toward Molecular Manipulation: Tailoring Plasmonic Nanostructure, Light Source, and Resonant Trapping
[27] | Wu X H, Gray S K and Pelton M 2010 Opt. Express 18 23633 | Quantum-dot-induced transparency in a nanoscale plasmonic resonator
[28] | Rahmani M, Lukyanchuk B S and Hong M 2013 Laser & Photon. Rev. 7 329 | Fano resonance in novel plasmonic nanostructures
[29] | Khitrova G, Gibbs H M, Kira M, Koch S W and Scherer A 2006 Nat. Phys. 2 81 | Vacuum Rabi splitting in semiconductors
[30] | Zengin G, Wersall M, Nilsson S, Antosiewicz T J, Kall M and Shegai T 2015 Phys. Rev. Lett. 114 157401 | Realizing Strong Light-Matter Interactions between Single-Nanoparticle Plasmons and Molecular Excitons at Ambient Conditions
[31] | Baranov D G, Wersall M, Cuadra J, Antosiewicz T J and Shegai T 2017 ACS Photon. 5 24 | Novel Nanostructures and Materials for Strong Light–Matter Interactions
[32] | Kockum A F, Miranowicz A, Liberato S D, Savasta S and Nori F 2019 Nat. Rev. Phys. 1 19 | Ultrastrong coupling between light and matter
[33] | Neumeier L, Quidant R and Chang D E 2015 New J. Phys. 17 123008 | Self-induced back-action optical trapping in nanophotonic systems
[34] | Mestres P, Berthelot J, Acimovic S S and Quidant R 2016 Light: Sci. & Appl. 5 e16092 | Unraveling the optomechanical nature of plasmonic trapping