[1] | Kelty S P, Chen C C, and Lieber C M 1991 Nature 352 223 | Superconductivity at 30 K in caesium-doped C60
[2] | Schön J, Kloc C, and Batlogg B 2000 Nature 408 549 | Superconductivity at 52 K in hole-doped C60
[3] | Rosseinsky M J, Ramirez A P, Glarum S H, Murphy D W, Haddon R C, Hebard A F, Palstra T T M, Kortan A R, Zahurak S M, and Makhija A V 1991 Phys. Rev. Lett. 66 2830 | Superconductivity at 28 K in
[4] | Hebard A, Rosseinky M, Haddon R, Murphy D, Glarum S, Palstra T, Ramirez A, and Karton A 1991 Nature 350 600 | Superconductivity at 18 K in potassium-doped C60
[5] | Yamanaka S, Enishi E, Fukuoka H, and Yasukawa M 2000 Inorg. Chem. 39 56 | High-Pressure Synthesis of a New Silicon Clathrate Superconductor, Ba 8 Si 46
[6] | Bouquet F, Fisher R, Phillips N, Hinks D, and Jorgensen J 2001 Phys. Rev. Lett. 87 047001 | Specific Heat of : Evidence for a Second Energy Gap
[7] | Aydemir U, Candolfi C, Borrmann H, Baitinger M, Ormeci A, Carrillo-Cabrera W, Chubilleau C, Lenoir B, Dauscher A, and Oeschler N 2010 Dalton Trans. 39 1078 | Crystal structure and transport properties of Ba8Ge43□3
[8] | Yonezawa S, Muraoka Y, and Hiroi Z 2004 J. Phys. Soc. Jpn. 73 1655 | New β-Pyrochlore Oxide Superconductor CsOs 2 O 6
[9] | Hiroi Z, Yamaura J I, and Hattori K 2012 J. Phys. Soc. Jpn. 81 011012 | Rattling Good Superconductor: β-Pyrochlore Oxides AOs 2 O 6
[10] | Hiroi Z, Yonezawa S, and Muraoka Y 2004 J. Phys. Soc. Jpn. 73 1651 | Unprecedented Superconductivity in β-Pyrochlore Osmate KOs 2 O 6
[11] | Saniz R, Medvedeva J E, Ye L H, Shishidou T, and Freeman A J 2004 Phys. Rev. B 70 100505 | Electronic structure properties and BCS superconductivity in -pyrochlore oxides:
[12] | Hiroi Z, Yonezawa S, Yamaura J I, Muramatsu T, and Muraoka Y 2005 J. Phys. Soc. Jpn. 74 1682 | Second Anomaly in the Specific Heat of β-Pyrochlore Oxide Superconductor KOs 2 O 6
[13] | Muramatsu T, Yonezawa S, Muraoka Y, and Hiroi Z 2004 J. Phys. Soc. Jpn. 73 2912 | High Pressure Effects on Superconductivity in the β-Pyrochlore Oxides AOs 2 O 6 (A = K, Rb, Cs)
[14] | Yamaura J I, Yonezawa S, Muraoka Y, and Hiroi Z 2006 J. Solid State Chem. 179 336 | Crystal structure of the pyrochlore oxide superconductor KOs2O6
[15] | Saniz R and Freeman A J 2005 Phys. Rev. B 72 024522 | Pressure effects on the electronic properties and superconductivity of the -pyrochlore oxides:
[16] | Zang J W, Zhang J, Zhu Z H, Ding Z F, Huang K, Peng X R, Hillier A D, and Shu L 2019 Chin. Phys. Lett. 36 107402 | Broken Time-Reversal Symmetry in Superconducting Partially Filled Skutterudite Pr 1− δ Pt 4 Ge 12 *
[17] | Zhang J, Pang G, Jiao L, Nicklas M, Chen Y, Weng Z, Smidman M, Schnelle W, Leithe-Jasper A, and Maisuradze A 2015 Phys. Rev. B 92 220503 | Weak interband-coupling superconductivity in the filled skutterudite
[18] | Feldman J, Singh D J, Kendziora C, Mandrus D, and Sales B C 2003 Phys. Rev. B 68 094301 | Lattice dynamics of filled skutterudites:
[19] | Gumeniuk R, Schnelle W, Rosner H, Nicklas M, Leithe-Jasper A, and Grin Y 2008 Phys. Rev. Lett. 100 017002 | Superconductivity in the Platinum Germanides ( or Alkaline-Earth Metal) with Filled Skutterudite Structure
[20] | Bauer E, Grytsiv A, Chen X Q, Melnychenko-Koblyuk N, Hilscher G, Kaldarar H, Michor H, Royanian E, Giester G, and Rotter M 2007 Phys. Rev. Lett. 99 217001 | Superconductivity in Novel Ge-Based Skutterudites:
[21] | Leithe-Jasper A, Schnelle W, Rosner H, Senthilkumaran N, Rabis A, Baenitz M, Gippius A, Morozova E, Mydosh J, and Grin Y 2003 Phys. Rev. Lett. 91 037208 | Ferromagnetic Ordering in Alkali-Metal Iron Antimonides: and
[22] | Nakamura Y, Okazaki H, Yoshida R, Wakita T, Takeya H, Hirata K, Hirai M, Muraoka Y, and Yokoya T 2012 Phys. Rev. B 86 014521 | Comparative photoemission studies on the superconducting gap of the filled skutterudite superconductors LaPt Ge and PrPt Ge
[23] | Zhang J, Chen Y, Jiao L, Gumeniuk R, Nicklas M, Chen Y, Yang L, Fu B, Schnelle W, and Rosner H 2013 Phys. Rev. B 87 064502 | Multiband superconductivity in PrPt Ge single crystals
[24] | Bauer E, Grytsiv A, Chen X Q, Melnychenko-Koblyuk N, Hilscher G, Kaldarar H, Michor H, Royanian E, Rotter M, and Podloucky R 2008 Adv. Mater. 20 1325 | BaPt4Ge12: A Skutterudite Based Entirely on a Ge Framework
[25] | Qi Y, Lei H, Guo J, Shi W, Yan B, Felser C, and Hosono H 2017 J. Am. Chem. Soc. 139 8106 | Superconductivity in Alkaline Earth Metal-Filled Skutterudites Ba x Ir 4 X 12 (X = As, P)
[26] | Drozdov A, Kong P, Minkov V, Besedin S, Kuzovnikov M, Mozaffari S, Balicas L, Balakirev F, Graf D, and Prakapenka V 2019 Nature 569 528 | Superconductivity at 250 K in lanthanum hydride under high pressures
[27] | Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, and Hemley R J 2019 Phys. Rev. Lett. 122 027001 | Evidence for Superconductivity above 260 K in Lanthanum Superhydride at Megabar Pressures
[28] | Snider E, Dasenbrock-Gammon N, McBride R, Wang X, Meyers N, Lawler K V, Zurek E, Salamat A, and Dias R P 2021 Phys. Rev. Lett. 126 117003 | Synthesis of Yttrium Superhydride Superconductor with a Transition Temperature up to 262 K by Catalytic Hydrogenation at High Pressures
[29] | Hong F, Yang L, Shan P, Yang P, Liu Z, Sun J, Yin Y, Yu X, Cheng J, and Zhao Z 2020 Chin. Phys. Lett. 37 107401 | Superconductivity of Lanthanum Superhydride Investigated Using the Standard Four-Probe Configuration under High Pressures
[30] | Keppens V, Mandrus D, Sales B, Chakoumakos B, Dai P, Coldea R, Maple M, Gajewski D, Freeman E, and Bennington S 1998 Nature 395 876 | Localized vibrational modes in metallic solids
[31] | Hiroi Z, Onosaka A, Okamoto Y, Yamaura J I, and Harima H 2012 J. Phys. Soc. Jpn. 81 124707 | Rattling and Superconducting Properties of the Cage Compound Ga x V 2 Al 20
[32] | Bhattacharyya A, Adroja D, Kase N, Hillier A, Strydom A, and Akimitsu J 2018 Phys. Rev. B 98 024511 | Unconventional superconductivity in the cage-type compound
[33] | Winiarski M J, Wiendlocha B, Sternik M, Wiśniewski P, O'Brien J R, Kaczorowski D, and Klimczuk T 2016 Phys. Rev. B 93 134507 | Rattling-enhanced superconductivity in intermetallic cage compounds
[34] | Guo J, Yamaura J I, Lei H, Matsuishi S, Qi Y, and Hosono H 2013 Phys. Rev. B 88 140507 | Superconductivity in Ba Ir Ge ( ) with cage structure and softening of low-lying localized mode
[35] | Ishida S, Yanagi Y, Oka K, Kataoka K, Fujihisa H, Kito H, Yoshida Y, Iyo A, Hase I, and Gotoh Y 2014 J. Am. Chem. Soc. 136 5245 | Crystal Structure and Superconductivity of BaIr 2 Ge 7 and Ba 3 Ir 4 Ge 16 with Two-Dimensional Ba-Ge Networks
[36] | Nguyen H D, Prots Y, Schnelle W, Boehme B, Baitinger M, Paschen S, and Grin Y 2014 Z. Anorg. Allg. Chem. 640 760 | Preparation, Crystal Structure and Physical Properties of the Superconducting Cage Compound Ba 3 Ge 16 Ir 4
[37] | Lee S L, Cywinski R, and Kilcoyne S 1999 Muon Science: Muons Physics Chemistry Materials (Boca Raton: CRC Press) p 51 |
[38] | Amato A 1997 Rev. Mod. Phys. 69 1119 | Heavy-fermion systems studied by μSR technique
[39] | Sonier J E, Brewer J H, and Kiefl R F 2000 Rev. Mod. Phys. 72 769 | μSR studies of the vortex state in type-II superconductors
[40] | Pratt F 2000 Physica B 289 710 | WIMDA: a muon data analysis program for the Windows PC
[41] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
[42] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 | Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
[43] | Kresse G and Hafner J 1993 Phys. Rev. B 47 558 | Ab initio molecular dynamics for liquid metals
[44] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | Generalized Gradient Approximation Made Simple
[45] | Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 | Special points for Brillouin-zone integrations
[46] | Falmbigl M, Kneidinger F, Chen M, Grytsiv A, Michor H, Royanian E, Bauer E, Effenberger H, Podloucky R, and Rogl P 2013 Inorg. Chem. 52 931 | Cage-Forming Compounds in the Ba–Rh–Ge System: From Thermoelectrics to Superconductivity
[47] | Falmbigl M, Grytsiv A, Rogl P, and Giester G 2013 Intermetallics 36 61 | Clathrate formation in the systems Ba–Ir–Ge and Ba-Rh, Ir-Si: Crystal chemistry and phase relations
[48] | Kaveh M and Wiser N 1984 Adv. Phys. 33 257 | Electron-electron scattering in conducting materials
[49] | Bid A, Bora A, and Raychaudhuri A 2006 Phys. Rev. B 74 035426 | Temperature dependence of the resistance of metallic nanowires of diameter : Applicability of Bloch-Grüneisen theorem
[50] | Stormer H, Pfeiffer L, Baldwin K, and West K 1990 Phys. Rev. B 41 1278 | Observation of a Bloch-Grüneisen regime in two-dimensional electron transport
[51] | Qi Y, Guo J, Lei H, Xiao Z, Kamiya T, and Hosono H 2014 Phys. Rev. B 89 024517 | Superconductivity in noncentrosymmetric ternary equiatomic pnictides La MP ( = Ir and Rh; P = P and As)
[52] | Pan X C, Chen X, Liu H, Feng Y, Wei Z, Zhou Y, Chi Z, Pi L, Yen F, and Song F 2015 Nat. Commun. 6 7805 | Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride
[53] | Qi Y, Naumov P G, Ali M N, Rajamathi C R, Schnelle W, Barkalov O, Hanfland M, Wu S C, Shekhar C, and Sun Y 2016 Nat. Commun. 7 11038 | Superconductivity in Weyl semimetal candidate MoTe2
[54] | Müller K H, Fuchs G, Handstein A, Nenkov K, Narozhnyi V, and Eckert D 2001 J. Alloys Compd. 322 L10 | The upper critical field in superconducting MgB2
[55] | McMillan W 1968 Phys. Rev. 167 331 | Transition Temperature of Strong-Coupled Superconductors
[56] | Allen P B 1999 Handbook of Superconductivity (New York: Academic) p 478 |
[57] | Bhattacharyya A, Adroja D, Biswas P, Sato Y, Lees M, Aoki D, and Hillier A 2020 J. Phys.: Condens. Matter 32 065602 | Ir 5 d -band derived superconductivity in LaIr 3
[58] | Das D, Gupta R, Bhattacharyya A, Biswas P, Adroja D, and Hossain Z 2018 Phys. Rev. B 97 184509 | Multigap superconductivity in the charge density wave superconductor
[59] | Bhattacharyya A, Adroja D, Smidman M, and Anand V 2018 Sci. Chin. Phys. Mech. & Astron. 61 127402 | A brief review on μSR studies of unconventional Fe- and Cr-based superconductors
[60] | Bhattacharyya A, Adroja D, Panda K, Saha S, Das T, Machado A, Cigarroa O, Grant T, Fisk Z, and Hillier A 2019 Phys. Rev. Lett. 122 147001 | Evidence of a Nodal Line in the Superconducting Gap Symmetry of Noncentrosymmetric
[61] | Anand V K, Britz D, Bhattacharyya A, Adroja D, Hillier A, Strydom A, Kockelmann W, Rainford B, and McEwen K A 2014 Phys. Rev. B 90 014513 | Physical properties of noncentrosymmetric superconductor : A SR study
[62] | Prozorov R and Giannetta R W 2006 Supercond. Sci. Technol. 19 R41 | Magnetic penetration depth in unconventional superconductors
[63] | Bhattacharyya A, Adroja D, Hillier A, Jha R, Awana V, and Strydom A 2017 J. Phys.: Condens. Matter 29 265602 | Superconducting gap structure in the electron doped BiS 2 -based superconductor
[64] | Adroja D, Bhattacharyya A, Biswas P K, Smidman M, Hillier A D, Mao H, Luo H, Cao G H, Wang Z, and Wang C 2017 Phys. Rev. B 96 144502 | Multigap superconductivity in ThAsFeN investigated using measurements
[65] | Pang G, Smidman M, Jiang W, Bao J, Weng Z, Wang Y, Jiao L, Zhang J, Cao G, and Yuan H 2015 Phys. Rev. B 91 220502 | Evidence for nodal superconductivity in quasi-one-dimensional
[66] | Annett J F 1990 Adv. Phys. 39 83 | Symmetry of the order parameter for high-temperature superconductivity
[67] | Panda K, Bhattacharyya A, Adroja D, Kase N, Biswas P, Saha S, Das T, Lees M, and Hillier A 2019 Phys. Rev. B 99 174513 | Probing the superconducting ground state of ZrIrSi: A muon spin rotation and relaxation study