[1] | Aufray B, Kara A, Vizzini S, Oughaddou H, Léandri C, Ealet B, and Lay G L 2010 Appl. Phys. Lett. 96 183102 | Graphene-like silicon nanoribbons on Ag(110): A possible formation of silicene
[2] | Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B, and Aufray B 2010 Appl. Phys. Lett. 97 223109 | Epitaxial growth of a silicene sheet
[3] | De Padova P, Quaresima C, Ottaviani C, Sheverdyaeva P M, Moras P, Carbone C, Topwal D, Olivieri B, Kara A, and Oughaddou H 2010 Appl. Phys. Lett. 96 261905 | Evidence of graphene-like electronic signature in silicene nanoribbons
[4] | Cahangirov S, Topsakal M, Aktürk E, Şahin H, and Ciraci S 2009 Phys. Rev. Lett. 102 236804 | Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium
[5] | Fagan S B, Baierle R J, Mota R, Silva A J R D, and Fazzio A 2000 Phys. Rev. B 61 9994 | Ab initio calculations for a hypothetical material: Silicon nanotubes
[6] | Chen L, Liu C C, Feng B J, He X Y, Cheng P, Ding Z J, Meng S, Yao Y G, and Wu K H 2012 Phys. Rev. Lett. 109 056804 | Evidence for Dirac Fermions in a Honeycomb Lattice Based on Silicon
[7] | Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, and Lay G L 2012 Phys. Rev. Lett. 108 155501 | Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon
[8] | Liu C C, Jiang H, and Yao Y G 2011 Phys. Rev. B 84 195430 | Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin
[9] | Guo Z X, Furuya S, Iwata J, and Oshiyama A 2013 Phys. Rev. B 87 235435 | Absence and presence of Dirac electrons in silicene on substrates
[10] | Lin C L, Arafune R, Kawahara K, Kanno M, Tsukahara N, Minamitani E, Kim Y, Kawai M, and Takagi N 2013 Phys. Rev. Lett. 110 076801 | Substrate-Induced Symmetry Breaking in Silicene
[11] | Ezawa M 2012 New J. Phys. 14 033003 | A topological insulator and helical zero mode in silicene under an inhomogeneous electric field
[12] | Pan H, Li Z S, Liu C C, Zhu G B, Qiao Z H, and Yao Y G 2014 Phys. Rev. Lett. 112 106802 | Valley-Polarized Quantum Anomalous Hall Effect in Silicene
[13] | Liu C C, Feng W X, and Yao Y G 2011 Phys. Rev. Lett. 107 076802 | Quantum Spin Hall Effect in Silicene and Two-Dimensional Germanium
[14] | Tabert C J and Nicol E J 2013 Phys. Rev. B 87 235426 | AC/DC spin and valley Hall effects in silicene and germanene
[15] | Missault N, Vasilopoulos P, Vargiamidis V, Peeters F M, and Van Duppen B 2015 Phys. Rev. B 92 195423 | Spin- and valley-dependent transport through arrays of ferromagnetic silicene junctions
[16] | Stille L, Tabert C J, and Nicol E J 2012 Phys. Rev. B 86 195405 | Optical signatures of the tunable band gap and valley-spin coupling in silicene
[17] | Yesilyurt C, Tan S G, Liang G, and Jalil M B A 2015 Appl. Phys. Express 8 105201 | Efficient dual spin-valley filter in strained silicene
[18] | Siu Z B and Jalil M B A 2021 Sci. Rep. 11 7575 | Effective Hamiltonian for silicene under arbitrary strain from multi-orbital basis
[19] | Ezawa M and Nagaosa N 2013 Phys. Rev. B 88 121401(R) | Interference of topologically protected edge states in silicene nanoribbons
[20] | Cano-Cortes L, Ortix C, and van den Brink J 2013 Phys. Rev. Lett. 111 146801 | Fundamental Differences between Quantum Spin Hall Edge States at Zigzag and Armchair Terminations of Honeycomb and Ruby Nets
[21] | Van Duppen B, Vasilopoulos P, and Peeters F M 2014 Phys. Rev. B 90 035142 | Spin and valley polarization of plasmons in silicene due to external fields
[22] | Li Y, Jiang W Q, Ding G Y, Peng Y Z, Wen Z C, Wang G Q, Bai R, Qian Z H, Xiao X B, and Zhou G H 2019 J. Appl. Phys. 125 244304 | Electrically tunable valley-dependent transport in strained silicene constrictions
[23] | Yamakage A, Ezawa M, Tanaka Y, and Nagaosa N 2013 Phys. Rev. B 88 085322 | Charge transport in and junctions of silicene
[24] | Guzmán E, Navarro O, Oubram O, and Rodríguez-Vargas I 2018 J. Appl. Phys. 124 144305 | Transport properties and thermoelectric effects in gated silicene superlattices
[25] | Li Y, Zhu H B, Wang G Q, Peng Y Z, Xu J R, Qian Z H, Bai R, Zhou G H, Yesilyurt C, Siu Z B, and Jalil M B A 2018 Phys. Rev. B 97 085427 | Strain-controlled valley and spin separation in silicene heterojunctions
[26] | Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802 | Topological Order and the Quantum Spin Hall Effect
[27] | Ezawa M 2012 Phys. Rev. Lett. 109 055502 | Valley-Polarized Metals and Quantum Anomalous Hall Effect in Silicene
[28] | Büttiker M, Imry Y, Landauer R, and Pinhas S 1985 Phys. Rev. B 31 6207 | Generalized many-channel conductance formula with application to small rings
[29] | Wimmer M 2009 PhD Dissertation (German: University of Regensburg) |
[30] | Khomyakov P A, Brocks G, Karpan V, Zwierzycki M, and Kelly P J 2005 Phys. Rev. B 72 035450 | Conductance calculations for quantum wires and interfaces: Mode matching and Green’s functions
[31] | Kang J, Wu F, and Li J 2012 Appl. Phys. Lett. 100 233122 | Symmetry-dependent transport properties and magnetoresistance in zigzag silicene nanoribbons
[32] | Zhou B L, Zhou B H, Chen X W, Liao W H, and Zhou G H 2015 J. Phys.: Condens. Matter 27 465301 | Symmetry-dependent spin-charge transport and thermopower through a ZSiNR-based FM/normal/FM junction
[33] | Khizroev S, Hijazi Y, Chomko R, Mukherjee S, Chantrell R, Wu X, Carley R, and Litvinov D 2005 Appl. Phys. Lett. 86 042502 | Focused-ion-beam-fabricated nanoscale magnetoresistive ballistic sensors
[34] | Fernández-Pacheco A, De Teresa J M, Córdoba R, and Ibarra M R 2008 Nanotechnology 19 415302 | Exploring the conduction in atomic-sized metallic constrictions created by controlled ion etching