[1] | Bell L E 2008 Science 321 1457 | Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems
[2] | Zebarjadi M, Esfarjani K, Dresselhaus M S, Ren Z F, and Chen G 2012 Energy & Environ. Sci. 5 5147 | Perspectives on thermoelectrics: from fundamentals to device applications
[3] | Snyder G J and Toberer E S 2008 Nat. Mater. 7 105 | Complex thermoelectric materials
[4] | Goldsmid H J 2013 Introduction to Thermoelectricity (Berlin: Springer) p 3 |
[5] | Zhu T, Liu Y, Fu C, Heremans J P, Snyder J G, and Zhao X 2017 Adv. Mater. 29 1605884 | Compromise and Synergy in High‐Efficiency Thermoelectric Materials
[6] | Minnich A J, Dresselhaus M S, Ren Z F, and Chen G 2009 Energy & Environ. Sci. 2 466 | Bulk nanostructured thermoelectric materials: current research and future prospects
[7] | Hao F, Qiu P, Tang Y, Bai S, Xing T, Chu H S, Zhang Q, Lu P, Zhang T, Ren D, Chen J, Shi X, and Chen L 2016 Energy & Environ. Sci. 9 3120 | High efficiency Bi 2 Te 3 -based materials and devices for thermoelectric power generation between 100 and 300 °C
[8] | Zhu T, Fu C, Xie H, Liu Y, and Zhao X 2015 Adv. Energy Mater. 5 1500588 | High Efficiency Half-Heusler Thermoelectric Materials for Energy Harvesting
[9] | Shi X, Yang J, Salvador J R, Chi M, Cho J Y, Wang H, Bai S, Yang J, Zhang W, and Chen L 2011 J. Am. Chem. Soc. 133 7837 | Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports
[10] | Li J, Zhang X, Chen Z, Lin S, Li W, Shen J, Witting I T, Faghaninia A, Chen Y, Jain A, Chen L, Snyder G J, and Pei Y 2018 Joule 2 976 | Low-Symmetry Rhombohedral GeTe Thermoelectrics
[11] | Roychowdhury S, Samanta M, Perumal S, and Biswas K 2018 Chem. Mater. 30 5799 | Germanium Chalcogenide Thermoelectrics: Electronic Structure Modulation and Low Lattice Thermal Conductivity
[12] | Ravich Y I 1970 Semiconducting Lead Chalcogenides (New York: Springer Science + Busness Media) |
[13] | Li J, Chen Z, Zhang X, Sun Y, Yang J, and Pei Y 2017 NPG Asia Mater. 9 e353 | Electronic origin of the high thermoelectric performance of GeTe among the p-type group IV monotellurides
[14] | Rosi F D, Dismukes J P, and Hockings E F 1960 Electr. Eng. 79 450 | Semiconductor materials for thermoelectric power generation up to 700 C
[15] | Zhang X, Bu Z, Lin S, Chen Z, Li W, and Pei Y 2020 Joule 4 986 | GeTe Thermoelectrics
[16] | Hong M, Zou J, and Chen Z G 2019 Adv. Mater. 31 1807071 | Thermoelectric GeTe with Diverse Degrees of Freedom Having Secured Superhigh Performance
[17] | Bu Z L, Zhang X Y, Shan B, Tang J, Liu H X, Chen Z W, Lin S q, Li W, and Pei Y Z 2021 Sci. Adv. 7 eabf2738 | Realizing a 14% single-leg thermoelectric efficiency in GeTe alloys
[18] | Lewis J E 1969 Phys. Status Solidi 35 737 | Band Structure and Nature of Lattice Defects in GeTe from Analysis of Electrical Properties
[19] | Damon D H, Lubell M S, and Mazelsky R 1967 J. Phys. Chem. Solids 28 520 | Nature of the defects in germanium telluride
[20] | Edwards A H, Pineda A C, Schultz P A, Martin M G, Thompson A P, Hjalmarson H P, and Umrigar C J 2006 Phys. Rev. B 73 45210 | Electronic structure of intrinsic defects in crystalline germanium telluride
[21] | Perumal S, Bellare P, Shenoy U S, Waghmare U V, and Biswas K 2017 Chem. Mater. 29 10426 | Low Thermal Conductivity and High Thermoelectric Performance in Sb and Bi Codoped GeTe: Complementary Effect of Band Convergence and Nanostructuring
[22] | Perumal S, Roychowdhury S, Negi D S, Datta R, and Biswas K 2015 Chem. Mater. 27 7171 | High Thermoelectric Performance and Enhanced Mechanical Stability of p -type Ge 1– x Sb x Te
[23] | Li J, Zhang X, Lin S, Chen Z, and Pei Y 2017 Chem. Mater. 29 605 | Realizing the High Thermoelectric Performance of GeTe by Sb-Doping and Se-Alloying
[24] | Li J, Chen Z, Zhang X, Yu H, Wu Z, Xie H, Chen Y, and Pei Y 2017 Adv. Sci. 4 1700341 | Simultaneous Optimization of Carrier Concentration and Alloy Scattering for Ultrahigh Performance GeTe Thermoelectrics
[25] | Zheng Z, Su X, Deng R, Stoumpos C, Xie H, Liu W, Yan Y, Hao S, Uher C, Wolverton C, Kanatzidis M G, and Tang X 2018 J. Am. Chem. Soc. 140 2673 | Rhombohedral to Cubic Conversion of GeTe via MnTe Alloying Leads to Ultralow Thermal Conductivity, Electronic Band Convergence, and High Thermoelectric Performance
[26] | Hong M, Wang Y, Liu W, Matsumura S, Wang H, Zou J, and Chen Z G 2018 Adv. Energy Mater. 8 1801837 | Arrays of Planar Vacancies in Superior Thermoelectric Ge 1− x − y Cd x Bi y Te with Band Convergence
[27] | Hong M, Wang Y, Feng T, Sun Q, Xu S, Matsumura S, Pantelides S T, Zou J, and Chen Z G 2019 J. Am. Chem. Soc. 141 1742 | Strong Phonon–Phonon Interactions Securing Extraordinary Thermoelectric Ge 1– x Sb x Te with Zn-Alloying-Induced Band Alignment
[28] | Sun P, Kumar K R, Lyu M, Wang Z, Xiang J, and Zhang W 2021 Innovation 2 100101 | Generic Seebeck effect from spin entropy
[29] | Ciucivara A, Sahu B R, and Kleinman L 2007 Phys. Rev. B 75 241201 | Density functional study of
[30] | Wang R F, Li S, Xue W H, Chen C, Wang Y M, Liu X J, and Zhang Q 2021 Rare Met. 40 40 | Enhanced thermoelectric performance of n-type TiCoSb half-Heusler by Ta doping and Hf alloying
[31] | Nielsen M D, Ozolins V, and Heremans J P 2013 Energy & Environ. Sci. 6 570 | Lone pair electrons minimize lattice thermal conductivity
[32] | Xu X, Xie L, Lou Q, Wu D, and He J 2018 Adv. Sci. 5 1801514 | Boosting the Thermoelectric Performance of Pseudo-Layered Sb 2 Te 3 (GeTe) n via Vacancy Engineering
[33] | Chattopadhyay T, Boucherle J X, and VonSchnering H G 1987 J. Phys. C 20 1431 | Neutron diffraction study on the structural phase transition in GeTe
[34] | Lee H S, Kim B S, Cho C W, Oh M W, Min B K, Park S D, and Lee H W 2015 Acta Mater. 91 83 | Herringbone structure in GeTe-based thermoelectric materials
[35] | Bu Z, Chen Z, Zhang X, Lin S, Mao J, Li W, Chen Y, and Pei Y 2020 Mater. Today Phys. 15 100260 | Near-room-temperature rhombohedral Ge1-Pb Te thermoelectrics
[36] | Cao J, Chien S W, Tan X Y, Tan C K I, Zhu Q, Wu J, Wang X, Zhao Y, Yang L, Yan Q, Liu H, Xu J, and Suwardi A 2021 ChemNanoMat 7 476 | Realizing zT Values of 2.0 in Cubic GeTe
[37] | Askarpour V and Maassen J 2019 Phys. Rev. B 100 75201 | Unusual thermoelectric transport anisotropy in quasi-two-dimensional rhombohedral GeTe
[38] | Gibbs Z M, Ricci F, Li G, Zhu H, Persson K, Ceder G, Hautier G, Jain A, and Snyder G J 2017 npj Comput. Mater. 3 8 | Effective mass and Fermi surface complexity factor from ab initio band structure calculations
[39] | Samanta M, Ghosh T, Arora R, Waghmare U V, and Biswas K 2019 J. Am. Chem. Soc. 141 19505 | Realization of Both n- and p-Type GeTe Thermoelectrics: Electronic Structure Modulation by AgBiSe 2 Alloying
[40] | Liu Z, Sato N, Guo Q, Gao W, and Mori T 2020 NPG Asia Mater. 12 66 | Shaping the role of germanium vacancies in germanium telluride: metastable cubic structure stabilization, band structure modification, and stable N-type conduction
[41] | Robertson J 1983 Phys. Rev. B 28 4671 | Universal band structures for group-V elements and IV-VI compound semiconductors
[42] | Van de Walle C G and Neugebauer J 2004 J. Appl. Phys. 95 3851 | First-principles calculations for defects and impurities: Applications to III-nitrides
[43] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
[44] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | Generalized Gradient Approximation Made Simple
[45] | Huo H, Wang Y, Xi L, Yang J, and Zhang W 2021 J. Mater. Chem. C 9 5765 | The variation of intrinsic defects in XTe (X = Ge, Sn, and Pb) induced by the energy positions of valence band maxima
[46] | Bu Z, Li W, Li J, Zhang X, Mao J, Chen Y, and Pei Y 2019 Mater. Today Phys. 9 100096 | Dilute Cu2Te-alloying enables extraordinary performance of r-GeTe thermoelectrics
[47] | Xie L, Chen Y, Liu R, Song E, Xing T, Deng T, Song Q, Liu J, Zheng R, Gao X, Bai S, and Chen L 2020 Nano Energy 68 104347 | Stacking faults modulation for scattering optimization in GeTe-based thermoelectric materials
[48] | Yue L, Fang T, Zheng S, Cui W, Wu Y, Chang S, Wang L, Bai P, and Zhao H 2019 ACS Appl. Energy Mater. 2 2596 | Cu/Sb Codoping for Tuning Carrier Concentration and Thermoelectric Performance of GeTe-Based Alloys with Ultralow Lattice Thermal Conductivity
[49] | Zhang X, Li J, Wang X, Chen Z, Mao J, Chen Y, and Pei Y 2018 J. Am. Chem. Soc. 140 15883 | Vacancy Manipulation for Thermoelectric Enhancements in GeTe Alloys
[50] | Snyder G J, Snyder A H, Wood M, Gurunathan R, Snyder B H, and Niu C 2020 Adv. Mater. 32 2001537 | Weighted Mobility
[51] | Ren Q, Fu C, Qiu Q, Dai S, Liu Z, Masuda T, Asai S, Hagihala M, Lee S, Torri S, Kamiyama T, He L, Tong X, Felser C, Singh D J, Zhu T, Yang J, and Ma J 2020 Nat. Commun. 11 3142 | Establishing the carrier scattering phase diagram for ZrNiSn-based half-Heusler thermoelectric materials
[52] | Goldsmid H J and Sharp J W 1999 J. Electron. Mater. 28 869 | Estimation of the thermal band gap of a semiconductor from seebeck measurements
[53] | Cahill D G, Watson S K, and Pohl R O 1992 Phys. Rev. B 46 6131 | Lower limit to the thermal conductivity of disordered crystals