[1] | Wen X G 2017 Rev. Mod. Phys. 89 041004 | Colloquium : Zoo of quantum-topological phases of matter
[2] | Wen X G 2019 Science 363 eaal3099 | Choreographed entanglement dances: Topological states of quantum matter
[3] | Gu Z C and Wen X G 2009 Phys. Rev. B 80 155131 | Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order
[4] | Chen X, Liu Z X, and Wen X G 2011 Phys. Rev. B 84 235141 | Two-dimensional symmetry-protected topological orders and their protected gapless edge excitations
[5] | Chen X, Gu Z C, Liu Z X, and Wen X G 2012 Science 338 1604 | Symmetry-Protected Topological Orders in Interacting Bosonic Systems
[6] | Chen X, Gu Z C, Liu Z X, and Wen X G 2013 Phys. Rev. B 87 155114 | Symmetry protected topological orders and the group cohomology of their symmetry group
[7] | Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 | Colloquium : Topological insulators
[8] | Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 | Topological insulators and superconductors
[9] | Fu L 2011 Phys. Rev. Lett. 106 106802 | Topological Crystalline Insulators
[10] | Affleck I, Kennedy T, Lieb E H, and Tasaki H 1987 Phys. Rev. Lett. 59 799 | Rigorous results on valence-bond ground states in antiferromagnets
[11] | Gu Z C and Wen X G 2014 Phys. Rev. B 90 115141 | Symmetry-protected topological orders for interacting fermions: Fermionic topological nonlinear models and a special group supercohomology theory
[12] | Kapustin A, Thorngren R, Turzillo A, and Wang Z 2015 J. High Energy Phys. 2015(12) 052 | Fermionic symmetry protected topological phases and cobordisms
[13] | Gaiotto D and Kapustin A 2016 Int. J. Mod. Phys. A 31 1645044 | Spin TQFTs and fermionic phases of matter
[14] | Kapustin A and Thorngren R 2017 J. High Energy Phys. 2017(10) 080 | Fermionic SPT phases in higher dimensions and bosonization
[15] | Gaiotto D and Johnson-Freyd T 2019 J. High Energy Phys. 2019(05) 007 | Symmetry protected topological phases and generalized cohomology
[16] | Wang Q R and Gu Z C 2018 Phys. Rev. X 8 011055 | Towards a Complete Classification of Symmetry-Protected Topological Phases for Interacting Fermions in Three Dimensions and a General Group Supercohomology Theory
[17] | Wang J, Ohmori K, Putrov P, Zheng Y, Wan Z, Guo M, Lin H, Gao P, and Yau S T 2018 Prog. Theor. Exp. Phys. 2018 053A01 | Tunneling topological vacua via extended operators: (Spin-)TQFT spectra and boundary deconfinement in various dimensions
[18] | Cheng M, Bi Z, You Y Z, and Gu Z C 2018 Phys. Rev. B 97 205109 | Classification of symmetry-protected phases for interacting fermions in two dimensions
[19] | Lan T, Zhu C, and Wen X G 2019 Phys. Rev. B 100 235141 | Fermion decoration construction of symmetry-protected trivial order for fermion systems with any symmetry and in any dimension
[20] | Wang Q R and Gu Z C 2020 Phys. Rev. X 10 031055 | Construction and Classification of Symmetry-Protected Topological Phases in Interacting Fermion Systems
[21] | Brumfiel G and Morgan J 2016 arXiv:1612.02860 [math.AT] | The Pontrjagin Dual of 3-Dimensional Spin Bordism
[22] | Brumfiel G and Morgan J 2018 arXiv:1803.08147 [math.GT] | The Pontrjagin Dual of 4-Dimensional Spin Bordism
[23] | Tantivasadakarn N 2017 Phys. Rev. B 96 195101 | Dimensional reduction and topological invariants of symmetry-protected topological phases
[24] | Levin M and Gu Z C 2012 Phys. Rev. B 86 115109 | Braiding statistics approach to symmetry-protected topological phases
[25] | Wang C and Levin M 2014 Phys. Rev. Lett. 113 080403 | Braiding Statistics of Loop Excitations in Three Dimensions
[26] | Wang C and Levin M 2015 Phys. Rev. B 91 165119 | Topological invariants for gauge theories and symmetry-protected topological phases
[27] | Cheng M, Tantivasadakarn N, and Wang C 2018 Phys. Rev. X 8 011054 | Loop Braiding Statistics and Interacting Fermionic Symmetry-Protected Topological Phases in Three Dimensions
[28] | Wang J, Wen X G, and Yau S T 2019 Ann. Phys. 409 167904 | Quantum statistics and spacetime topology: Quantum surgery formulas
[29] | Chen X, Burnell F J, Vishwanath A, and Fidkowski L 2015 Phys. Rev. X 5 041013 | Anomalous Symmetry Fractionalization and Surface Topological Order
[30] | Barkeshli M, Bonderson P, Cheng M, and Wang Z 2019 Phys. Rev. B 100 115147 | Symmetry fractionalization, defects, and gauging of topological phases
[31] | Barkeshli M and Cheng M 2020 SciPost Phys. 8 28 | Relative anomalies in (2+1)D symmetry enriched topological states
[32] | Bulmash D and Barkeshli M 2020 Phys. Rev. Res. 2 043033 | Absolute anomalies in (2+1)D symmetry-enriched topological states and exact (3+1)D constructions
[33] | Ning S Q, Zou L, and Cheng M 2020 Phys. Rev. Res. 2 043043 | Fractionalization and anomalies in symmetry-enriched U(1) gauge theories
[34] | Qi Y Sptset Package https://github.com/yangqi137/SptSet |
[35] | GAP 2019 GAP-Groups, Algorithms, and Programming Version 4.10.2 https://www.gap-system.org |
[36] | Ryu S, Schnyder A P, Furusaki A, and Ludwig A W W 2010 New J. Phys. 12 065010 | Topological insulators and superconductors: tenfold way and dimensional hierarchy
[37] | Wang Q R, Qi Y, and Gu Z C 2019 Phys. Rev. Lett. 123 207003 | Anomalous Symmetry Protected Topological States in Interacting Fermion Systems
[38] | Joyner D 2007 arXiv:0706.0549 [math.GR] | A primer on computational group homology and cohomology
[39] | Brown K S 2012 Cohomology of Groups (Berlin: Springer) vol 87 |
[40] | Ellis G and Luyen L V 2012 J. Symb. Comput. 47 1309 | Computational homology of n-types
[41] | Ellis G 2004 J. Symb. Comput. 38 1077 | Computing group resolutions
[42] | Ellis G 2019 HAP, Homological Algebra Programming Version 1.19 https://gap-packages.github.io/hap |
[43] | Wall C T C 1961 Math. Proc. Cambridge Philos. Soc. 57 251 | Resolutions for extensions of groups
[44] | Wallpaper group, https://en.wikipedia.org/wiki/Wallpaper/_group |
[45] | Thorngren R and Else D V 2018 Phys. Rev. X 8 011040 | Gauging Spatial Symmetries and the Classification of Topological Crystalline Phases
[46] | Cheng M and Wang C 2018 arXiv:1810.12308 [cond-mat.str-el] | Rotation Symmetry-Protected Topological Phases of Fermions
[47] | Zhang J H, Yang S, Qi Y, and Gu Z C 2020 arXiv:2012.15657 [cond-mat.str-el] | Real-space construction of crystalline topological superconductors and insulators in 2D interacting fermionic systems