[1] | Armand M and Tarascon J M 2008 Nature 451 652 | Building better batteries
[2] | Irisarri E, Ponrouch A, and Palacin M R 2015 J. Electrochem. Soc. 162 A2476 | Review—Hard Carbon Negative Electrode Materials for Sodium-Ion Batteries
[3] | Sathiya M, Rousse G, Ramesha K, Laisa C, Vezin H, Sougrati M T, Doublet M L, Foix D, Gonbeau D, and Walker W 2013 Nat. Mater. 12 827 | Reversible anionic redox chemistry in high-capacity layered-oxide electrodes
[4] | Wen C J and Huggins R A 1981 J. Electrochem. Soc. 128 1181 | Thermodynamic Study of the Lithium‐Tin System
[5] | Wen C J and Huggins R A 1981 J. Solid State Chem. 37 271 | Chemical diffusion in intermediate phases in the lithium-silicon system
[6] | Gauthier M, Carney T J, Grimaud A, Giordano L, Pour N, Chang H H, Fenning D P, Lux S F, Paschos O, Bauer C, Maglia F, Lupart S, Lamp P, and Shao-Horn Y 2015 J. Phys. Chem. Lett. 6 4653 | Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights
[7] | Andersson A and Edström K 2001 J. Electrochem. Soc. 148 A1100 | Chemical Composition and Morphology of the Elevated Temperature SEI on Graphite
[8] | Smart M, Ratnakumar B, Surampudi S, Wang Y, Zhang X, Greenbaum S, Hightower A, Ahn C, and Fultz B 1999 J. Electrochem. Soc. 146 3963 | Irreversible Capacities of Graphite in Low‐Temperature Electrolytes for Lithium‐Ion Batteries
[9] | Andersson A M, Henningson A, Siegbahn H, Jansson U, and Edström K 2003 J. Power Sources 119–121 522 | Electrochemically lithiated graphite characterised by photoelectron spectroscopy
[10] | Morigaki K I and Ohta A 1998 J. Power Sources 76 159 | Analysis of the surface of lithium in organic electrolyte by atomic force microscopy, Fourier transform infrared spectroscopy and scanning auger electron microscopy
[11] | Ein-Eli Y, Markovsky B, Aurbach D, Carmeli Y, Yamin H, and Luski S 1994 Electrochim. Acta 39 2559 | The dependence of the performance of Li-C intercalation anodes for Li-ion secondary batteries on the electrolyte solution composition
[12] | Aurbach D, Levi M D, Levi E, and Schechter A 1997 J. Phys. Chem. B 101 2195 | Failure and Stabilization Mechanisms of Graphite Electrodes
[13] | Wandt J, Marino C, Gasteiger H A, Jakes P, Eichel R A, and Granwehr J 2015 Energy & Environ. Sci. 8 1358 | Operando electron paramagnetic resonance spectroscopy – formation of mossy lithium on lithium anodes during charge–discharge cycling
[14] | Wandt J, Jakes P, Granwehr J, Eichel R A, and Gasteiger H A 2018 Mater. Today 21 231 | Quantitative and time-resolved detection of lithium plating on graphite anodes in lithium ion batteries
[15] | Gireaud L, Grugeon S, Laruelle S, Pilard S, and Tarascon J M 2005 J. Electrochem. Soc. 152 A850 | Identification of Li Battery Electrolyte Degradation Products Through Direct Synthesis and Characterization of Alkyl Carbonate Salts
[16] | Dai Y, Wang Y, Eshkenazi V, Peled E, and Greenbaum S 1998 J. Electrochem. Soc. 145 1179 | Lithium‐7 Nuclear Magnetic Resonance Investigation of Lithium Insertion in Hard Carbon
[17] | Matsumura Y, Wang S, Nakagawa Y, and Yamaguchi C 1997 Synth. Met. 85 1411 | An electron-spin resonance study of lithium charged carbon electrodes
[18] | Łoś, Duclauxb L, Kempiński W, and Połomska M 2010 Microporous Mesoporous Mater. 130 21 | Size effect in the characterization of microporous activated nanostructured carbon
[19] | See K A, Hug S, Schwinghammer K, Lumley M A, Zheng Y, Nolt J M, Stucky G D, Wudl F, Lotsch B V, and Seshadri R 2015 Chem. Mater. 27 3821 | Lithium Charge Storage Mechanisms of Cross-Linked Triazine Networks and Their Porous Carbon Derivatives
[20] | Wang B, Fevre L W L, Brookfield A, McInnes E J L, and Dryfe R A W 2021 Angew. Chem. Int. Ed. 60 21860 | Resolution of Lithium Deposition versus Intercalation of Graphite Anodes in Lithium Ion Batteries: An In Situ Electron Paramagnetic Resonance Study
[21] | Hooper R W, Klein B A, and Michaelis V K 2020 Chem. Mater. 32 4425 | Dynamic Nuclear Polarization (DNP) 101: A New Era for Materials
[22] | Carver T R and Slichter C P 1953 Phys. Rev. 92 212 | Polarization of Nuclear Spins in Metals
[23] | Overhauser A W 1953 Phys. Rev. 92 411 | Polarization of Nuclei in Metals
[24] | Hope M A, Rinkel B L D, Gunnarsdottir A B, Marker K, Menkin S, Paul S, Sergeyev I V, and Grey C P 2020 Nat. Commun. 11 2224 | Selective NMR observation of the SEI–metal interface by dynamic nuclear polarisation from lithium metal
[25] | Leskes M, Kim G, Liu T, Michan A L, Aussenac F, Dorffer P, Paul S, and Grey C P 2017 J. Phys. Chem. Lett. 8 1078 | Surface-Sensitive NMR Detection of the Solid Electrolyte Interphase Layer on Reduced Graphene Oxide
[26] | Harchol A, Reuveni G, Ri V, Thomas B, Carmieli R, Herber R H, Kim C, and Leskes M 2020 J. Phys. Chem. C 124 7082 | Endogenous Dynamic Nuclear Polarization for Sensitivity Enhancement in Solid-State NMR of Electrode Materials
[27] | Garcia S, Walton J H, Armstrong B, Han S, and McCarthy M J 2010 J. Magn. Reson. 203 138 | L-band Overhauser dynamic nuclear polarization
[28] | Rosay M, Tometich L, Pawsey S, Bader R, Schauwecker R, Blank M, Borchard P M, Cauffman S R, Felch K L, Weber R T, Temkin R J, Griffin R G, and Maas W E 2010 Phys. Chem. Chem. Phys. 12 5850 | Solid-state dynamic nuclear polarization at 263 GHz: spectrometer design and experimental results
[29] | Waldmann T, Hogg B I, and Wohlfahrt-Mehrens M 2018 J. Power Sources 384 107 | Li plating as unwanted side reaction in commercial Li-ion cells – A review
[30] | Yang L, Bao Q, Mao W, and Liu C 2012 Chin. J. Magn. Reson. 29 78 (in Chinese) | System Performance Evaluation of a Self-Developed NMR Spectrometer
[31] | He Y, Feng J, Zhang Z, Wang C, Wang D, Chen F, Liu M, and Liu C 2015 Rev. Sci. Instrum. 86 083101 | A peripheral component interconnect express-based scalable and highly integrated pulsed spectrometer for solution state dynamic nuclear polarization
[32] | Niemoller A, Jakes P, Eichel R A, and Granwehr J 2018 Sci. Rep. 8 14331 | EPR Imaging of Metallic Lithium and its Application to Dendrite Localisation in Battery Separators
[33] | Liu G, Levien M, Karschin N, Parigi G, Luchinat C, and Bennati M 2017 Nat. Chem. 9 676 | One-thousand-fold enhancement of high field liquid nuclear magnetic resonance signals at room temperature