[1] | Carr L D, DeMille D, Krems R V, and Ye J 2009 New J. Phys. 11 055049 | Cold and ultracold molecules: science, technology and applications
[2] | Tomza M, Jachymski K, Gerritsma R, Negretti A, Calarco T, Idziaszek Z and Julienne P S2019 Rev. Mod. Phys. 91 035001 | Cold hybrid ion-atom systems
[3] | Wall T E 2016 J. Phys. B 49 243001 | Preparation of cold molecules for high-precision measurements
[4] | Safronova M S, Budker D, DeMille D, Kimball D F J, Derevianko A, and Clark C W 2018 Rev. Mod. Phys. 90 025008 | Search for new physics with atoms and molecules
[5] | Chupp T E, Fierlinger P, Ramsey-Musolf M J, and Singh J T 2019 Rev. Mod. Phys. 91 015001 | Electric dipole moments of atoms, molecules, nuclei, and particles
[6] | Cairncross W B and Ye J 2019 Nat. Rev. Phys. 1 510 | Atoms and molecules in the search for time-reversal symmetry violation
[7] | Lin Y, Leibrandt D R, Leibfried D, and Chou C W 2020 Nature 581 273 | Quantum entanglement between an atom and a molecule
[8] | Albert V V, Covey J P, and Preskill J 2020 Phys. Rev. X 10 031050 | Robust Encoding of a Qubit in a Molecule
[9] | Phillips W D 1998 Rev. Mod. Phys. 70 721 | Nobel Lecture: Laser cooling and trapping of neutral atoms
[10] | Liang Z T, Lv Q X, Zhang S C, Wu W T, Du Y X, Yan H, and Zhu S L 2019 Chin. Phys. Lett. 36 080301 | Coherent Coupling between Microwave and Optical Fields via Cold Atoms *
[11] | Yuan J, Ma Y, Li R, Ma H, Zhang Y, Ye D, Shen Z, Yan T M, Wang X, Weidemüller M, and Jiang Y 2020 Chin. Phys. Lett. 37 053201 | Momentum Spectroscopy for Multiple Ionization of Cold Rubidium in the Elliptically Polarized Laser Field
[12] | Wang K P, Zhuang J, He X D, Guo R J, Sheng C, Xu P, Liu M, Wang J, and Zhan M S 2020 Chin. Phys. Lett. 37 044209 | High-Fidelity Manipulation of the Quantized Motion of a Single Atom via Stern–Gerlach Splitting
[13] | Zhou P P, Chen S L, Liang S Y, Sun W, and Gao K L 2020 Chin. Phys. Lett. 37 093701 | Significantly Improving the Escape Time of a Single 40 Ca + Ion in a Linear Paul Trap by Fast Switching of the Endcap Voltage
[14] | Chen S L, Zhou P P, Liang S Y, Sun W, Sun H Y, Huang Y, Guan H, and Gao K L 2020 Chin. Phys. Lett. 37 073201 | Deceleration of Metastable Li + Beam by Combining Electrostatic Lens and Ion Trap Technique
[15] | Ubachs W, Bagdonaite J, Salumbides E J, Murphy M T, and Kaper L 2016 Rev. Mod. Phys. 88 021003 | Colloquium : Search for a drifting proton-electron mass ratio from
[16] | Bethlem H L, Berden G, and Meijer G 1999 Phys. Rev. Lett. 83 1558 | Decelerating Neutral Dipolar Molecules
[17] | Schnell M and Meijer G 2009 Angew. Chem. Int. Ed. 48 6010 | Cold Molecules: Preparation, Applications, and Challenges
[18] | van de Meerakker S Y T, Bethlem H L, Vanhaecke N, and Meijer G 2012 Chem. Rev. 112 4828 | Manipulation and Control of Molecular Beams
[19] | Haas D, Scherb S, Dongdong Z, and Willitsch S 2017 EPJ Tech. Instrum. 4 6 | Optimizing the density of Stark decelerated radicals at low final velocities: a tutorial review
[20] | Fu G B, Deng L Z, and Yin J P 2008 Chin. Phys. Lett. 25 923 | A New Desirable Molecular Species for Stark Deceleration
[21] | Deng L Z, Fu G B, and Yin J P 2009 Chin. Phys. B 18 149 | Theoretical study of slowing supersonic CH 3 F molecular beams using electrostatic Stark decelerator
[22] | Yin Y L, Xia Y, and Yin J P 2006 Chin. Phys. Lett. 23 2737 | Stark Deceleration of an Effusive Molecular Beam by a Single Semi-Gaussian Beam
[23] | Vanhaecke N, Meier U, Andrist M, Meier B H, and Merkt F 2007 Phys. Rev. A 75 031402 | Multistage Zeeman deceleration of hydrogen atoms
[24] | Narevicius E, Parthey C G, Libson A, Riedel M F, Even U, and Raizen M G 2007 New J. Phys. 9 96 | Towards magnetic slowing of atoms and molecules
[25] | Hogan S D, Motsch M, and Merkt F 2011 Phys. Chem. Chem. Phys. 13 18705 | Deceleration of supersonic beams using inhomogeneous electric and magnetic fields
[26] | Lavert-Ofir E et al. 2011 Phys. Chem. Chem. Phys. 13 18948 | Stopping paramagnetic supersonic beams: the advantage of a co-moving magnetic trap decelerator
[27] | Narevicius E and Raizen M G 2012 Chem. Rev. 112 4879 | Toward Cold Chemistry with Magnetically Decelerated Supersonic Beams
[28] | Damjanović T et al. 2021 New J. Phys. 23 105006 | A new design for a traveling-wave Zeeman decelerator: I. Theory
[29] | Damjanović T, Willitsch S, Vanhaecke N, Haak H, Meijer G, Cromiéres J P, and Zhang D 2021 New J. Phys. 23 105007 | A new design for a traveling-wave Zeeman decelerator: II. Experiment
[30] | Hutzler N R, Lu H I, and Doyle J M 2012 Chem. Rev. 112 4803 | The Buffer Gas Beam: An Intense, Cold, and Slow Source for Atoms and Molecules
[31] | Truppe S et al. 2018 J. Mod. Opt. 65 648 | A buffer gas beam source for short, intense and slow molecular pulses
[32] | Tarbutt M R 2018 Contemp. Phys. 59 356 | Laser cooling of molecules
[33] | Yin Y, Xu S, Xia M, Xia Y, and Yin J 2018 Phys. Rev. A 97 043403 | Optically stimulated slowing of polar heavy-atom molecules with a constant beat phase
[34] | Yan K, Wei B, Yin Y, Xu S, Xu L, Xia M, Gu R, Xia Y, and Yin J 2020 New J. Phys. 22 033003 | A new route for laser cooling and trapping of cold molecules: Intensity-gradient cooling of MgF molecules using localized hollow beams
[35] | Jones K M, Tiesinga E, Lett P D, and Julienne P S 2006 Rev. Mod. Phys. 78 483 | Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering
[36] | Ulmanis J, Deiglmayr J, Repp M, Wester R, and Weidemüller M 2012 Chem. Rev. 112 4890 | Ultracold Molecules Formed by Photoassociation: Heteronuclear Dimers, Inelastic Collisions, and Interactions with Ultrashort Laser Pulses
[37] | Köhler T, Góral K, and Julienne P S 2006 Rev. Mod. Phys. 78 1311 | Production of cold molecules via magnetically tunable Feshbach resonances
[38] | Chin C, Grimm R, Julienne P, and Tiesinga E 2010 Rev. Mod. Phys. 82 1225 | Feshbach resonances in ultracold gases
[39] | Yan X C, Sun D L, Wang L, Min J, Peng S G, and Jiang K J 2021 Chin. Phys. Lett. 38 056701 | Production of Degenerate Fermi Gases of 6 Li Atoms in an Optical Dipole Trap
[40] | Guo G F, Bao X X, Ta N L, and Gu H Q 2021 Chin. Phys. Lett. 38 040302 | Phase-Modulated 2D Topological Physics in a One-Dimensional Ultracold System
[41] | He X, Wang K, Zhuang J, Xu P, Gao X, Guo R, Sheng C, Liu M, Wang J, Li J, Shlyapnikov G V, and Zhan M 2020 Science 370 331 | Coherently forming a single molecule in an optical trap
[42] | Cheuk L W, De An R L, Augenbraun B L, Bao Y, Burchesky S, Ketterle W, and Doyle J M 2018 Phys. Rev. Lett. 121 083201 | -Enhanced Imaging of Molecules in an Optical Trap
[43] | Enomoto K, Kasa K, Kitagawa M, and Takahashi Y 2008 Phys. Rev. Lett. 101 203201 | Optical Feshbach Resonance Using the Intercombination Transition
[44] | Bloch I, Dalibard J, and Zwerger W 2008 Rev. Mod. Phys. 80 885 | Many-body physics with ultracold gases
[45] | Wang Q, Hou S, Xu L, and Yin J 2016 Phys. Chem. Chem. Phys. 18 5432 | Slowing and cooling of heavy or light (even with a tiny electric dipole moment) polar molecules using a novel, versatile electrostatic Stark decelerator
[46] | Bochinski J R, Hudson E R, Lewandowski H J, and Ye J 2004 Phys. Rev. A 70 043410 | Cold free-radical molecules in the laboratory frame
[47] | van de Meerakker S Y T, Vanhaecke N, Bethlem H L, and Meijer G 2005 Phys. Rev. A 71 053409 | Higher-order resonances in a Stark decelerator
[48] | Gilijamse J J, Küpper J, Hoekstra S, Vanhaecke N, van de Meerakker S Y T, and Meijer G 2006 Phys. Rev. A 73 063410 | Optimizing the Stark-decelerator beamline for the trapping of cold molecules using evolutionary strategies
[49] | van de Meerakker S Y T, Vanhaecke N, Bethlem H L, and Meijer G 2006 Phys. Rev. A 73 023401 | Transverse stability in a Stark decelerator
[50] | Scharfenberg L, Haak H, Meijer G, and van de Meerakker S Y T 2009 Phys. Rev. A 79 023410 | Operation of a Stark decelerator with optimum acceptance
[51] | Zhang D, Meijer G, and Vanhaecke N 2016 Phys. Rev. A 93 023408 | Advanced switching schemes in a Stark decelerator
[52] | Reens D, Wu H, Aeppli A, McAuliffe A, Wcisło P, Langen T, and Ye J 2020 Phys. Rev. Res. 2 033095 | Beyond the limits of conventional Stark deceleration
[53] | Hudson E R, Bochinski J R, Lewandowski H J, Sawyer B C, and Ye J 2004 Eur. Phys. J. D 31 351 | Efficient Stark deceleration of cold polar molecules
[54] | Tarbutt M R et al. 2004 Phys. Rev. Lett. 92 173002 | Slowing Heavy, Ground-State Molecules using an Alternating Gradient Decelerator
[55] | van de Meerakker S Y T, Smeets P H M, Vanhaecke N, Jongma R T, and Meijer G 2005 Phys. Rev. Lett. 94 023004 | Deceleration and Electrostatic Trapping of OH Radicals
[56] | Sawyer B C, Stuhl B K, Lev B L, Ye J, and Hudson E R 2008 Eur. Phys. J. D 48 197 | Mitigation of loss within a molecular Stark decelerator
[57] | van der Meerakker S Y T 2006 PhD Dissertation (Radboud Universiteit) |