[1] | Streater R F and Wightman A S 1980 PCT, Spin and Statistics and All That 3rd edn (New York: W. A. Benjamin, Inc.) |
[2] | Pauli W 1940 Phys. Rev. 58 716 | The Connection Between Spin and Statistics
[3] | Weinberg S 2005 The Quantum Theory of Fields (Cambridge: Cambridge University Press) vol 1 |
[4] | Coester F 1992 Prog. Part. Nucl. Phys. 29 1 | Null-plane dynamics of particles and fields
[5] | Zyla P et al. 2020 Review of Particle Physics, PTEP 2020 083C01 |
[6] | Hofstadter R 1956 Rev. Mod. Phys. 28 214 | Electron Scattering and Nuclear Structure
[7] | Punjabi V, Perdrisat C F, Jones M K, Brash E J, and Carlson C E 2015 Eur. Phys. J. A 51 79 | The structure of the nucleon: Elastic electromagnetic form factors
[8] | Cloet I C and Roberts C D 2014 Prog. Part. Nucl. Phys. 77 1 | Explanation and prediction of observables using continuum strong QCD
[9] | Eichmann G, Sanchis-Alepuz H, Williams R, Alkofer R, and Fischer C S 2016 Prog. Part. Nucl. Phys. 91 1 | Baryons as relativistic three-quark bound states
[10] | Brodsky S J et al. 2020 Int. J. Mod. Phys. E 29 2030006 | Strong QCD from Hadron Structure Experiments
[11] | Barabanov M Y et al. 2021 Prog. Part. Nucl. Phys. 116 103835 | Diquark correlations in hadron physics: Origin, impact and evidence
[12] | Sachs R 1962 Phys. Rev. 126 2256 | High-Energy Behavior of Nucleon Electromagnetic Form Factors
[13] | Miller G A 2010 Annu. Rev. Nucl. Part. Sci. 60 1 | Transverse Charge Densities
[14] | Aoyama T, Hayakawa M, Kinoshita T, and Nio M 2012 Phys. Rev. Lett. 109 111807 | Tenth-Order QED Contribution to the Electron and an Improved Value of the Fine Structure Constant
[15] | Aoyama T, Hayakawa M, Kinoshita T, and Nio M 2012 Phys. Rev. Lett. 109 111808 | Complete Tenth-Order QED Contribution to the Muon
[16] | Frisch R and Stern O 1933 Z. Phys. 85 4 | �ber die magnetische Ablenkung von Wasserstoffmolek�len und das magnetische Moment des Protons. I
[17] | Jones M K et al. 2000 Phys. Rev. Lett. 84 1398 | Ratio by Polarization Transfer in
[18] | Foldy L L 1958 Rev. Mod. Phys. 30 471 | Neutron-Electron Interaction
[19] | Miller G A, Piasetzky E, and Ron G 2008 Phys. Rev. Lett. 101 082002 | Proton Electromagnetic-Form-Factor Ratios at Low
[20] | Pohl R et al. 2010 Nature 466 213 | The size of the proton
[21] | Antognini A et al. 2013 Science 339 417 | Proton Structure from the Measurement of 2S-2P Transition Frequencies of Muonic Hydrogen
[22] | Beyer A et al. 2017 Science 358 79 | The Rydberg constant and proton size from atomic hydrogen
[23] | Xiong W et al. 2019 Nature 575 147 | A small proton charge radius from an electron–proton scattering experiment
[24] | Bezginov N, Valdez T, Horbatsch M, Marsman A, Vutha A C, and Hessels E A 2019 Science 365 1007 | A measurement of the atomic hydrogen Lamb shift and the proton charge radius
[25] | Grinin A, Matveev A, Yost D C, Maisenbacher L, Wirthl V, Pohl R, Hänsch T W, Udem T 2020 Science 370 1061 | Two-photon frequency comb spectroscopy of atomic hydrogen
[26] | Pohl R et al. 2016 Science 353 669 | Laser spectroscopy of muonic deuterium
[27] | Bernauer J C et al. 2010 Phys. Rev. Lett. 105 242001 | High-Precision Determination of the Electric and Magnetic Form Factors of the Proton
[28] | Bernauer J C et al. 2014 Phys. Rev. C 90 015206 | Electric and magnetic form factors of the proton
[29] | Lee G, Arrington J R, and Hill R J 2015 Phys. Rev. D 92 013013 | Extraction of the proton radius from electron-proton scattering data
[30] | Alarcón J M, Higinbotham D W, and Weiss C 2020 Phys. Rev. C 102 035203 | Precise determination of the proton magnetic radius from electron scattering data
[31] | Lin Y H, Hammer H W, and Meißner U G 2021 Eur. Phys. J. A 57 255 | Dispersion-theoretical analysis of the electromagnetic form factors of the nucleon: Past, present and future
[32] | Djukanovic D, Harris T, von Hippel G, Junnarkar P M, Meyer H B, Mohler D, Ottnad K, Schulz T, Wilhelm J, and Wittig H 2021 Phys. Rev. D 103 094522 | Isovector electromagnetic form factors of the nucleon from lattice QCD and the proton radius puzzle
[33] | Schlessinger L 1968 Phys. Rev. 167 1411 | Use of Analyticity in the Calculation of Nonrelativistic Scattering Amplitudes
[34] | Schlessinger L and Schwartz C 1966 Phys. Rev. Lett. 16 1173 | Analyticity as a Useful Computation Tool
[35] | Tripolt R A, Haritan I, Wambach J, and Moiseyev N 2017 Phys. Lett. B 774 411 | Threshold energies and poles for hadron physical problems by a model-independent universal algorithm
[36] | Gao H and Vanderhaeghen M 2021 arXiv:2105.00571 [hep-ph] | The proton charge radius
[37] | Kraus E, Mesick K E, White A, Gilman R, and Strauch S 2014 Phys. Rev. C 90 045206 | Polynomial fits and the proton radius puzzle
[38] | Lorenz I T and Meißner U G 2014 Phys. Lett. B 737 57 | Reduction of the proton radius discrepancy by 3 σ
[39] | Griffioen K, Carlson C, and Maddox S 2016 Phys. Rev. C 93 065207 | Consistency of electron scattering data with a small proton radius
[40] | Higinbotham D W, Kabir A A, Lin V, Meekins D, Norum B, and Sawatzky B 2016 Phys. Rev. C 93 055207 | Proton radius from electron scattering data
[41] | Hayward T B and Griffioen K A 2020 Nucl. Phys. A 999 121767 | Evaluation of low-Q2 fits to ep and ed elastic scattering data
[42] | Zhou S, Giulani P, Piekarewicz J, Bhattacharya A, and Pati D 2019 Phys. Rev. C 99 055202 | Reexamining the proton-radius problem using constrained Gaussian processes
[43] | Alarcón J M, Higinbotham D W, Weiss C, and Ye Z 2019 Phys. Rev. C 99 044303 | Proton charge radius extraction from electron scattering data using dispersively improved chiral effective field theory
[44] | Barcus S K, Higinbotham D W, and McClellan R E 2020 Phys. Rev. C 102 015205 | How analytic choices can affect the extraction of electromagnetic form factors from elastic electron scattering cross section data
[45] | Hammer H W and Meißner U G 2020 Sci. Bull. 65 257 | The proton radius: from a puzzle to precision
[46] | Cui Z F, Binosi D, Roberts C D, and Schmidt S M 2021 Phys. Rev. Lett. 127 092001 | Fresh Extraction of the Proton Charge Radius from Electron Scattering
[47] | Cui Z F, Binosi D, Roberts C D, and Schmidt S M 2021 Phys. Lett. B 822 136631 | Pion charge radius from pion+electron elastic scattering data
[48] | Chen C, Lu Y, Binosi D, Roberts C D, Rodrı́guez-Quintero J, and Segovia J 2019 Phys. Rev. D 99 034013 | Nucleon-to-Roper electromagnetic transition form factors at large
[49] | Binosi D, Chang L, Ding M, Gao F, Papavassiliou J, and Roberts C D 2019 Phys. Lett. B 790 257 | Distribution amplitudes of heavy-light mesons
[50] | Binosi D and Tripolt R A 2020 Phys. Lett. B 801 135171 | Spectral functions of confined particles
[51] | Eichmann G, Duarte P, Peña M P, and Stadler A 2019 Phys. Rev. D 100 094001 | Scattering amplitudes and contour deformations
[52] | Yao Z Q, Binosi D, Cui Z F, Roberts C D, Xu S S, and Zong H S 2020 Phys. Rev. D 102 014007 | Semileptonic decays of mesons
[53] | Yao Z Q, Binosi D, Cui Z F, and Roberts C D 2021 Phys. Lett. B 818 136344 | Semileptonic B → η,J/ψ transitions
[54] | Cui Z F, Gao F, Binosi D, Chang L, Roberts C D, and Schmidt S M 2021 arXiv:2108.11493 [hep-ph] | Valence quark ratio in the proton
[55] | Rosenbluth M 1950 Phys. Rev. 79 615 | High Energy Elastic Scattering of Electrons on Protons
[56] | Reinsch C H 1967 Numer. Math. 10 177 | Smoothing by spline functions
[57] | Press W H, Teukolsky S A, Vetterling W T, and Flannery B P 2007 Numerical Recipes 3rd edn (New York: Cambridge University Press) |
[58] | Friedrich J and Walcher T 2003 Eur. Phys. J. A 17 607 | A coherent interpretation of the form factors of the nucleon in terms of a pion cloud and constituent quarks
[59] | Yan X, Higinbotham D W, Dutta D, Gao H, Gasparian A, Khandaker M A, Liyanage N, Pasyuk E, Peng C, and Xiong W 2018 Phys. Rev. C 98 025204 | Robust extraction of the proton charge radius from electron-proton scattering data
[60] | Roberts C D, Williams A G, and Krein G 1992 Int. J. Mod. Phys. A 7 5607 | ON THE IMPLICATIONS OF CONFINEMENT
[61] | Jaffe A M 2006 Not. Am. Math. Soc. 53 652 |
[62] | Aguilar A C et al. 2019 Eur. Phys. J. A 55 190 | Pion and kaon structure at the electron-ion collider
[63] | Roberts C D 2020 Symmetry 12 1468 | Empirical Consequences of Emergent Mass
[64] | Roberts C D 2021 AAPPS Bull. 31 6 | On mass and matter
[65] | Singh J 1985 Phys. Rev. D 31 1097 | Anomalous magnetic moment of light quarks and dynamical symmetry breaking
[66] | Bicudo P J A, Ribeiro J E F T, Fernandes R 1999 Phys. Rev. C 59 1107 | Anomalous magnetic moment of quarks
[67] | Chang L, Liu Y X, and Roberts C D 2011 Phys. Rev. Lett. 106 072001 | Dressed-Quark Anomalous Magnetic Moments
[68] | Aguilar A C, Binosi D, and Papavassiliou J 2016 Front. Phys. Chin. 11 111203 | The gluon mass generation mechanism: A concise primer
[69] | Fischer C S 2019 Prog. Part. Nucl. Phys. 105 1 | QCD at finite temperature and chemical potential from Dyson–Schwinger equations
[70] | Roberts C D, Richards D G, Horn T, and Chang L 2021 Prog. Part. Nucl. Phys. 120 103883 | Insights into the emergence of mass from studies of pion and kaon structure
[71] | Qin S X and Roberts C D 2021 Chin. Phys. Lett. 38 071201 | Resolving the Bethe–Salpeter Kernel
[72] | Arrington J et al. 2021 J. Phys. G 48 075106 | Revealing the structure of light pseudoscalar mesons at the electron–ion collider
[73] | Giannini M M and Santopinto E 2015 Chin. J. Phys. 53 020301 |
[74] | Sufian R S, de Téramond G F, Brodsky S J, Deur A, and Dosch H G 2017 Phys. Rev. D 95 014011 | Analysis of nucleon electromagnetic form factors from light-front holographic QCD: The spacelike region
[75] | Xu Y Z, Binosi D, Cui Z F, Li B L, Roberts C D, Xu S S, and Zong H S 2019 Phys. Rev. D 100 114038 | Elastic electromagnetic form factors of vector mesons
[76] | Mondal C, Xu S, Lan J, Zhao X, Li Y, Chakrabarti D, and Vary J P 2020 Phys. Rev. D 102 016008 | Proton structure from a light-front Hamiltonian
[77] | Cui Z F, Chen C, Binosi D, de Soto F, Roberts C D, Rodríguez-Quintero J, Schmidt S M, and Segovia J 2020 Phys. Rev. D 102 014043 | Nucleon elastic form factors at accessible large spacelike momenta
[78] | Xu Y Z, Chen S, Yao Z Q, Binosi D, Cui Z F, and Roberts C D 2021 Eur. Phys. J. C 81 895 | Vector-meson production and vector meson dominance