[1] | Li Y, Lu Y, Zhao C, Hu Y S, Titirici M M, Li H, Huang X, and Chen L 2017 Energy Storage Mater. 7 130 | Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage
[2] | Mu L, Xu S, Li Y, Hu Y S, Li H, Chen L, and Huang X 2015 Adv. Mater. 27 6928 | Prototype Sodium-Ion Batteries Using an Air-Stable and Co/Ni-Free O3-Layered Metal Oxide Cathode
[3] | Usiskin R, Lu Y, Popovic J, Law M, Balaya P, Hu Y S, and Maier J 2021 Nat. Rev. Mater. | Fundamentals, status and promise of sodium-based batteries
[4] | Pan H, Hu Y S, and Chen L 2013 Energy & Environ. Sci. 6 2338 | Room-temperature stationary sodium-ion batteries for large-scale electric energy storage
[5] | Song J, Xiao B, Lin Y, Xu K, and Li X 2018 Adv. Energy Mater. 8 1703082 | Interphases in Sodium‐Ion Batteries
[6] | Xie F, Xu Z, Guo Z, and Titirici M 2020 Prog. Energy 2 042002 | Hard carbons for sodium-ion batteries and beyond
[7] | Wang F, Wang B, Li J, Wang B, Zhou Y, Wang D, Liu H, and Dou S 2021 ACS Nano 15 2197 | Prelithiation: A Crucial Strategy for Boosting the Practical Application of Next-Generation Lithium Ion Battery
[8] | Zhan R M, Wang X C, Chen Z H, Seh Z W, Wang L, and Sun Y M 2021 Adv. Energy Mater. 11 2101565 | Promises and Challenges of the Practical Implementation of Prelithiation in Lithium‐Ion Batteries
[9] | Zhang X, Fan C, and Han S 2017 J. Mater. Sci. 52 10418 | Improving the initial Coulombic efficiency of hard carbon-based anode for rechargeable batteries with high energy density
[10] | Xu Z, Xie F, Wang J, Au H, Tebyetekerwa M, Guo Z, Yang S, Hu Y S, and Titirici M M 2019 Adv. Funct. Mater. 29 1903895 | All‐Cellulose‐Based Quasi‐Solid‐State Sodium‐Ion Hybrid Capacitors Enabled by Structural Hierarchy
[11] | Moeez I, Jung H G, Lim H D, and Chung K Y 2019 ACS Appl. Mater. & Interfaces 11 41394 | Presodiation Strategies and Their Effect on Electrode–Electrolyte Interphases for High-Performance Electrodes for Sodium-Ion Batteries
[12] | Liu X, Tan Y, Liu T, Wang W, Li C, Lu J, and Sun Y 2019 Adv. Funct. Mater. 29 1903795 | A Simple Electrode‐Level Chemical Presodiation Route by Solution Spraying to Improve the Energy Density of Sodium‐Ion Batteries
[13] | Liu M, Zhang J, Guo S, Wang B, Shen Y, Ai X, Yang H, and Qian J 2020 ACS Appl. Mater. & Interfaces 12 17620 | Chemically Presodiated Hard Carbon Anodes with Enhanced Initial Coulombic Efficiencies for High-Energy Sodium Ion Batteries
[14] | Jo J H, Choi J U, Park Y J, Ko J, Yashiro H, and Myung S T 2020 Energy Storage Mater. 32 281 | A new pre-sodiation additive for sodium-ion batteries
[15] | Zou K, Cai P, Tian Y, Li J, Liu C, Zou G, and Hou H 2020 Small Methods 4 1900763 | Voltage‐Induced High‐Efficient In Situ Presodiation Strategy for Sodium Ion Capacitors
[16] | Niu Y B, Guo Y J, Yin Y Y, Zhang S Y, Wang T, Wang P, Xin S, and Guo Y 2020 Adv. Mater. 32 2001419 | High‐Efficiency Cathode Sodium Compensation for Sodium‐Ion Batteries
[17] | Ding F, Meng Q, Yu P, Wang H, Niu Y, Li Y, Yang Y, Rong X, Liu X, Lu Y, Chen L, and Hu Y S 2021 Adv. Funct. Mater. 31 2101475 | Additive‐Free Self‐Presodiation Strategy for High‐Performance Na‐Ion Batteries
[18] | Holtstiege F, Bärmann P, Nölle R, Winter M, and Placke T 2018 Batteries 4 4 | Pre-Lithiation Strategies for Rechargeable Energy Storage Technologies: Concepts, Promises and Challenges
[19] | He H, Sun D, Tang Y, Wang H, and Shao M 2019 Energy Storage Mater. 23 233 | Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries
[20] | Zhang M, Li Y, Wu F, Bai Y, and Wu C 2021 Nano Energy 82 105738 | Boost sodium-ion batteries to commercialization: Strategies to enhance initial Coulombic efficiency of hard carbon anode
[21] | Lotfabad E M, Kalisvaart P, Kohandehghan A, Karpuzov D, and Mitlin D 2014 J. Mater. Chem. A 2 19685 | Origin of non-SEI related coulombic efficiency loss in carbons tested against Na and Li
[22] | Xiao L, Lu H, Fang Y, Sushko M L, Cao Y, Ai X, Yang H, and Liu J 2018 Adv. Energy Mater. 8 1703238 | Low‐Defect and Low‐Porosity Hard Carbon with High Coulombic Efficiency and High Capacity for Practical Sodium Ion Battery Anode
[23] | Xie F, Xu Z, Jensen A, Ding F, Au H, Feng J, Luo H, Qiao M, Guo Z, Lu Y, Drew A, Hu Y S, and Titirici M 2019 J. Mater. Chem. A 7 27567 | Unveiling the role of hydrothermal carbon dots as anodes in sodium-ion batteries with ultrahigh initial coulombic efficiency
[24] | Li Z, Bommier C, Chong Z S, Jian Z, Surta T W, Wang X, Xing Z, Neuefeind J C, Stickle W F, Dolgos M, Greaney P A, and Ji X 2017 Adv. Energy Mater. 7 1602894 | Mechanism of Na‐Ion Storage in Hard Carbon Anodes Revealed by Heteroatom Doping
[25] | Xie F, Xu Z, Guo Z, Lu Y, Chen L, Titirici M M, and Hu Y S 2021 Sci. Chin. Chem. 64 1679 | Disordered carbon anodes for Na-ion batteries—quo vadis?
[26] | Xie F, Xu Z, Jensen A C S, Au H, Lu Y, Araullo-Peters V, Drew A J, Hu Y S, and Titirici M M 2019 Adv. Funct. Mater. 29 1901072 | Hard–Soft Carbon Composite Anodes with Synergistic Sodium Storage Performance
[27] | Luo W, Bommier C, Jian Z, Li X, Carter R, Vail S, Lu Y, Lee J J, and Ji X 2015 ACS Appl. Mater. & Interfaces 7 2626 | Low-Surface-Area Hard Carbon Anode for Na-Ion Batteries via Graphene Oxide as a Dehydration Agent
[28] | Li Q, Zhu Y, Zhao P, Yuan C, Chen M, and Wang C 2018 Carbon 129 85 | Commercial activated carbon as a novel precursor of the amorphous carbon for high-performance sodium-ion batteries anode
[29] | Lu H, Chen X, Jia Y, Chen H, Wang Y, Ai X, Yang H, and Cao Y 2019 Nano Energy 64 103903 | Engineering Al2O3 atomic layer deposition: Enhanced hard carbon-electrolyte interface towards practical sodium ion batteries
[30] | Qi Y, Lu Y, Ding F, Zhang Q, Li H, Huang X, Chen L, and Hu Y 2019 Angew. Chem. 131 4405 | Slope‐Dominated Carbon Anode with High Specific Capacity and Superior Rate Capability for High Safety Na‐Ion Batteries
[31] | Zhou C, Li A, Cao B, Chen X, Jia M, and Song H 2018 Electrochem. Soc. Interface 165 A1447 | The Non-Ignorable Impact of Surface Oxygen Groups on the Electrochemical Performance of N/O Dual-Doped Carbon Anodes for Sodium Ion Batteries
[32] | Chen C, Huang Y, Zhu Y, Zhang Z, Guang Z, Meng Z, and Liu P 2020 ACS Sustain. Chem. Eng. 8 1497 | Nonignorable Influence of Oxygen in Hard Carbon for Sodium Ion Storage
[33] | Yamamoto H, Muratsubaki S, Kubota K, Fukunishi M, Watanabe H, Kim J, and Komaba S 2018 J. Mater. Chem. A 6 16844 | Synthesizing higher-capacity hard-carbons from cellulose for Na- and K-ion batteries
[34] | Zhao X, Ding Y, Xu Q, Yu X, Liu Y, and Shen H 2019 Adv. Energy Mater. 9 1803648 | Low-Temperature Growth of Hard Carbon with Graphite Crystal for Sodium-Ion Storage with High Initial Coulombic Efficiency: A General Method
[35] | De Llave E, Borgel V, Park K, Hwang J, Sun Y, Hartmann P, Chesneau F F, and Aurbach D 2016 ACS Appl. Mater. & Interfaces 8 1867 | Comparison between Na-Ion and Li-Ion Cells: Understanding the Critical Role of the Cathodes Stability and the Anodes Pretreatment on the Cells Behavior
[36] | Dewar D and Glushenkov A M 2021 Energy & Environ. Sci. 14 1380 | Optimisation of sodium-based energy storage cells using pre-sodiation: a perspective on the emerging field
[37] | Liu W, Chen X, Zhang C, Xu H, Sun X, Zheng Y, Yu Y, Li S, Huang Y, and Li J 2019 ACS Appl. Mater. & Interfaces 11 23207 | Gassing in Sn-Anode Sodium-Ion Batteries and Its Remedy by Metallurgically Prealloying Na
[38] | Xiao B, Soto F A, Gu M, Han K S, Song J, Wang H, Engelhard M H, Murugesan V, Mueller K T, Reed D, Sprenkle V L, Balbuena P B, and Li X 2018 Adv. Energy Mater. 8 1801441 | Lithium‐Pretreated Hard Carbon as High‐Performance Sodium‐Ion Battery Anodes
[39] | Forney M W, Ganter M J, Staub J W, Ridgley R D, and Landi B J 2013 Nano Lett. 13 4158 | Prelithiation of Silicon–Carbon Nanotube Anodes for Lithium Ion Batteries by Stabilized Lithium Metal Powder (SLMP)
[40] | Pan Q, Zuo P, Mu T, Du C, Cheng X, Ma Y, Gao Y, and Yin G 2017 J. Power Sources 347 170 | Improved electrochemical performance of micro-sized SiO-based composite anode by prelithiation of stabilized lithium metal powder
[41] | Tang J, Kye D K, and Pol V G 2018 J. Power Sources 396 476 | Ultrasound-assisted synthesis of sodium powder as electrode additive to improve cycling performance of sodium-ion batteries
[42] | Wang G, Li F, Liu D, Zheng D, Luo Y, Qu D, Ding T, and Qu D 2019 ACS Appl. Mater. & Interfaces 11 8699 | Chemical Prelithiation of Negative Electrodes in Ambient Air for Advanced Lithium-Ion Batteries
[43] | Zhang X, Qu H, Ji W, Zheng D, Ding T, Abegglen C, Qiu D, and Qu D 2020 ACS Appl. Mater. & Interfaces 12 11589 | Fast and Controllable Prelithiation of Hard Carbon Anodes for Lithium-Ion Batteries
[44] | Wang G, Li F, Liu D, Zheng D, Abeggien C J, Luo Y, Yang X Q, Ding T, and Qu D 2020 Energy Storage Mater. 24 147 | High performance lithium-ion and lithium–sulfur batteries using prelithiated phosphorus/carbon composite anode
[45] | Shen Y, Qian J, Yang H, Zhong F, and Ai X 2020 Small 16 1907602 | Chemically Prelithiated Hard‐Carbon Anode for High Power and High Capacity Li‐Ion Batteries
[46] | Pan X, Chojnacka A, and Béguin F 2021 Energy Storage Mater. 40 22 | Advantageous carbon deposition during the irreversible electrochemical oxidation of Na2C4O4 used as a presodiation source for the anode of sodium-ion systems
[47] | Shanmukaraj D, Kretschmer K, Sahu T, Bao W, Rojo T, Wang G, and Wang M 2018 ChemSusChem 11 3286 | Highly Efficient, Cost Effective, and Safe Sodiation Agent for High-Performance Sodium-Ion Batteries
[48] | Zhou X, Lai Y, Wu X, Chen Z, Faping Z, Xinping A, Hanxi Y, and Yuliang C 2021 Chem. Res. Chin. Univ. 37 274 | Improved Initial Charging Capacity of Na-poor Na0.44MnO2 via Chemical Presodiation Strategy for Low-cost Sodium-ion Batteries
[49] | Zou K, Deng W, Cai P, Deng X, Wang B, Liu C, Li J, Hou H, Zou G, and Ji X 2020 Adv. Funct. Mater. 31 2005581 | Prelithiation/Presodiation Techniques for Advanced Electrochemical Energy Storage Systems: Concepts, Applications, and Perspectives