[1] | Shi X, Chen L, and Uher C 2016 Int. Mater. Rev. 61 379 | Recent advances in high-performance bulk thermoelectric materials
[2] | Snyder G J and Toberer E S 2008 Nat. Mater. 7 105 | Complex thermoelectric materials
[3] | Shi X L, Zou J, and Chen Z G 2020 Chem. Rev. 120 7399 | Advanced Thermoelectric Design: From Materials and Structures to Devices
[4] | Chowdhury I, Prasher R, Lofgreen K, Chrysler G, Narasimhan S, Mahajan R, Koester D, Alley R, and Venkatasubramanian R 2009 Nat. Nanotechnol. 4 235 | On-chip cooling by superlattice-based thin-film thermoelectrics
[5] | Hudak N S and Amatucci G G 2008 J. Appl. Phys. 103 101301 | Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion
[6] | Sharp J, Bierschenk J, and Lyon H B 2006 Proc. IEEE 94 1602 | Overview of Solid-State Thermoelectric Refrigerators and Possible Applications to On-Chip Thermal Management
[7] | Snyder G J, Lim J R, Huang C K, and Fleurial J P 2003 Nat. Mater. 2 528 | Thermoelectric microdevice fabricated by a MEMS-like electrochemical process
[8] | Zhao H Z, Sui J E, Tang Z J, Lan Y C, Jie Q G, Kraemer D, McEnaney K N, Guloy A, Chen G, and Ren Z F 2014 Nano Energy 7 97 | High thermoelectric performance of MgAgSb-based materials
[9] | Zhang J, Song L, Pedersen S H, Yin H, Hung L T, and Iversen B B 2017 Nat. Commun. 8 13901 | Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands
[10] | Mao J, Shuai J, Song S W, Wu Y X, Dally R, Zhou J W, Liu Z H, Sun J F, Zhang Q Y, dela C C, Wilson S, Pei Y Z, Singh D J, Chen G, Chu C W, and Ren Z F 2017 Proc. Natl. Acad. Sci. USA 114 10548 | Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type Mg 3 Sb 2 -based materials
[11] | Liang J, Qiu P, Zhu Y, Huang H, Gao Z, Zhang Z, Shi X, and Chen L 2020 Research 2020 6591981 | Crystalline Structure-Dependent Mechanical and Thermoelectric Performance in System
[12] | Shi X, Chen H Y, Hao F, Liu R H, Wang T, Qiu P F, Burkhardt U, Grin Y, and Chen L D 2018 Nat. Mater. 17 421 | Room-temperature ductile inorganic semiconductor
[13] | Chen H Y, Wei T R, Zhao K P, Qiu P F, Chen L D, He J, and Shi X 2021 InfoMat 3 22 | Room‐temperature plastic inorganic semiconductors for flexible and deformable electronics
[14] | Gao Z Q, Yang Q Y, Qiu P F, Wei T R, Yang S Q, Xiao J, Chen L D, and Shi X 2021 Adv. Energy Mater. 11 2170086 | Thermoelectrics: p‐Type Plastic Inorganic Thermoelectric Materials (Adv. Energy Mater. 23/2021)
[15] | Liang J S, Wang T, Qiu P F, Yang S Q, Ming C, Chen H Y, Song Q F, Zhao K P, Wei T R, Ren D D, Sun Y Y, Shi X, He J, and Chen L D 2019 Energy & Environ. Sci. 12 2983 | Flexible thermoelectrics: from silver chalcogenides to full-inorganic devices
[16] | Yang S Q, Gao Z Q, Qiu P F, Liang J S, Wei T R, Deng T T, Xiao J, Shi X, and Chen L D 2021 Adv. Mater. 33 2007681 | Ductile Ag 20 S 7 Te 3 with Excellent Shape‐Conformability and High Thermoelectric Performance
[17] | He S Y, Li Y B, Liu L, Jiang Y, Feng J J, Zhu W, Zhang J Y, Dong Z R, Deng Y, Luo J, Zhang W Q, and Chen G 2020 Sci. Adv. 6 eaaz8423 | Semiconductor glass with superior flexibility and high room temperature thermoelectric performance
[18] | Poudel B, Hao Q, Ma Y, Lan Y C, Minnich A, Yu B, Yan X A, Wang D Z, Muto A, Vashaee D, Chen X Y, Liu J M, Dresselhaus M S, Chen G, and Ren Z F 2008 Science 320 634 | High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys
[19] | Zhai R S, Wu Y H, Zhu T J, and Zhao X B 2018 Rare Met. 37 308 | Thermoelectric performance of p-type zone-melted Se-doped Bi0.5Sb1.5Te3 alloys
[20] | Witting I T, Chasapis T C, Ricci F, Peters M, Heinz N A, Hautier G, and Snyder G J 2019 Adv. Electron. Mater. 5 1800904 | The Thermoelectric Properties of Bismuth Telluride
[21] | Mao J, Chen G, and Ren Z F 2021 Nat. Mater. 20 454 | Thermoelectric cooling materials
[22] | Liu H L, Shi X, Kirkham M, Wang H, Li Q, Uher C, Zhang W Q, and Chen L D 2013 Mater. Lett. 93 121 | Structure-transformation-induced abnormal thermoelectric properties in semiconductor copper selenide
[23] | Jiang B, Qiu P, Chen H, Huang J, Mao T, Wang Y, Song Q, Ren D, Shi X, Chen L 2018 Mater. Today Phys. 5 20 | Entropy optimized phase transitions and improved thermoelectric performance in n-type liquid-like Ag9GaSe6 materials
[24] | Lu P, Qiu W J, Wei Y Y, Zhu C X, Shi X, Chen L D, and Xu F F 2020 Acta Crystallogr. Sect. B-Struct. Sci. Cryst. Eng. Mat. 76 201 | The order–disorder transition in Cu 2 Se and medium-range ordering in the high-temperature phase
[25] | Chen L C, Chen P Q, Li W J, Zhang Q, Struzhkin V V, Goncharov A F, Ren Z F, and Chen X J 2019 Nat. Mater. 18 1321 | Enhancement of thermoelectric performance across the topological phase transition in dense lead selenide
[26] | Mahan G D 2015 J. Appl. Phys. 117 045101 | The Seebeck coefficient of superionic conductors
[27] | Sun S, Li Y, Chen Y, Xu X, Kang L, Zhou J, Xia W, Liu S, Wang M, Jiang J, Liang A, Pei D, Zhao K, Qiu P, Shi X, Chen L, Guo Y, Wang Z, Zhang Y, Liu Z, Yang L, and Chen Y 2020 Chin. Sci. Bull. 65 1888 | Development and evaluation of a new merged sea surface height product from multi-satellite altimeters
[28] | Liu H L, Yuan X, Lu P, Shi X, Xu F F, He Y, Tang Y S, Bai S Q, Zhang W Q, Chen L D, Lin Y, Shi L, Lin H, Gao X Y, Zhang X M, Chi H, Uher C 2013 Adv. Mater. 25 6607 | Ultrahigh Thermoelectric Performance by Electron and Phonon Critical Scattering in Cu 2 Se 1-x I x
[29] | Zhao K, Eikeland E, He D et al. 2021 Joule 5 1183 | Thermoelectric materials with crystal-amorphicity duality induced by large atomic size mismatch
[30] | Yang L, Chen Z G, Han G, Hong M, Zou Y C, Zou J 2015 Nano Energy 16 367 | High-performance thermoelectric Cu2Se nanoplates through nanostructure engineering
[31] | Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T, and Snyder G J 2012 Nat. Mater. 11 422 | Copper ion liquid-like thermoelectrics
[32] | Liu Y Y, Qiu P F, Chen H Y, Chen R, Shi X, and Chen L D 2017 J. Inorg. Mater. 32 1337 | Measuring Ionic Conductivity in Mixed Electron-ionic Conductors Based on the Ion-blocking Method
[33] | Qiu P, Shi X, and Chen L 2016 Energy Storage Mater. 3 85 | Cu-based thermoelectric materials
[34] | Zhang Z, Zhao K, Wei T R, Qiu P, Chen L, and Shi X 2020 Energy & Environ. Sci. 13 3307 | Cu 2 Se-Based liquid-like thermoelectric materials: looking back and stepping forward
[35] | Zhao K, Blichfeld A B, Chen H, Song Q, Zhang T, Zhu C, Ren D, Hanus R, Qiu P, Iversen B B, Xu F, Snyder G J, Shi X, and Chen L 2017 Chem. Mater. 29 6367 | Enhanced Thermoelectric Performance through Tuning Bonding Energy in Cu 2 Se 1– x S x Liquid-like Materials
[36] | Zhao K, Qiu P, Shi X, and Chen L 2020 Adv. Funct. Mater. 30 1903867 | Recent Advances in Liquid‐Like Thermoelectric Materials
[37] | Zhao K P, Qiu P F, Song Q F, Blichfeld A B, Eikeland E, Ren D D, Ge B H, Iversen B B, Shi X, and Chen L D 2017 Mater. Today Phys. 1 14 | Ultrahigh thermoelectric performance in Cu 2−y Se 0.5 S 0.5 liquid-like materials
[38] | Yang D W, Su X L, Li J, Bai H, Wang S Y, Li Z, Tang H, Tang K C, Luo T T, Yan Y G, Wu J S, Yang J H, Zhang Q J, Uher C, Kanatzidis M G, and Tang X F 2020 Adv. Mater. 32 2003730 | Blocking Ion Migration Stabilizes the High Thermoelectric Performance in Cu 2 Se Composites
[39] | Deng T T, Wei T R, Huang H, Song Q F, Zhao K P, Qiu P F, Yang J, Chen L D, and Shi X 2020 npj Comput. Mater. 6 81 | Number mismatch between cations and anions as an indicator for low lattice thermal conductivity in chalcogenides
[40] | Bai H, Su X L, Yang D W, Zhang Q J, Tan G J, Uher C, Tang X F, and Wu J S 2021 Adv. Funct. Mater. 31 2100431 | An Instant Change of Elastic Lattice Strain during Cu 2 Se Phase Transition: Origin of Abnormal Thermoelectric Properties
[41] | Chen H, Yue Z, Ren D, Zeng H, Wei T, Zhao K, Yang R, Qiu P, Chen L, and Shi X 2018 Adv. Mater. 31 1806518 | Thermal Conductivity during Phase Transitions
[42] | Eikeland E, Blichfeld A B, Borup K A, Zhao K, Overgaard J, Shi X, Chen L, and Iversen B B 2017 IUCrJ 4 476 | Crystal structure across the β to α phase transition in thermoelectric Cu 2− x Se
[43] | Kang S D, Danilkin S A, Aydemir U, Avdeev M, Studer A, and Snyder G J 2016 New J. Phys. 18 013024 | Apparent critical phenomena in the superionic phase transition of Cu 2- x Se
[44] | Xiao X X, Xie W J, Tang X F, and Zhang Q J 2011 Chin. Phys. B 20 087201 | Phase transition and high temperature thermoelectric properties of copper selenide Cu 2− x Se (0 ≤ x ≤ 0.25)
[45] | Byeon D, Sobota R, Delime-Codrin K, Choi S, Hirata K, Adachi M, Kiyama M, Matsuura T, Yamamoto Y, Matsunami M, and Takeuchi T 2019 Nat. Commun. 10 72 | Discovery of colossal Seebeck effect in metallic Cu2Se
[46] | Brown D R, Heijl R, Borup K A, Iversen B B, Palmqvist A, Snyder G J 2016 Phys. Status Solidi RRL 10 618 | Relating phase transition heat capacity to thermal conductivity and effusivity in Cu 2 Se
[47] | Liu W D, Yang L, Chen Z G, and Zou J 2020 Adv. Mater. 32 1905703 | Promising and Eco‐Friendly Cu 2 X‐Based Thermoelectric Materials: Progress and Applications
[48] | Brown D R, Day T, Borup K A, Christensen S, Iversen B B, and Snyder G J 2013 APL Mater. 1 052107 | Phase transition enhanced thermoelectric figure-of-merit in copper chalcogenides
[49] | Wang H, Porter W, Bottner H, Konig J, Chen L, Bai S, Tritt T, Mayolett A, Senawiratne J, Smith C, Harris F, Sharp J, Lo J, Kleinke H, and Kiss L 2011 Annex VIII—Thermoelectric Materials for Waste Heat Recovery: An International Collaboration for Transportation Applications (Oak Ridge: ORNL Press) chap 4 p 14 |
[50] | Yu J, Zhao K, Qiu P, Shi X, and Chen L 2017 Ceram. Int. 43 11142 | Thermoelectric properties of copper-deficient Cu2-Se (0.05 ≤ x ≤ 0.25) binary compounds
[51] | Heyding R D 1966 Can. J. Chem. 44 1233 | THE COPPER/SELENIUM SYSTEM
[52] | Chrissafis K, Paraskevopoulos K M, Manolikas C 2006 J. Therm. Anal. 84 195 | Studying Cu2–xSe phase transformation through DSC examination
[53] | Duan J L, Zhu C X, Guan M J, Lu P, He Y, Fu Z Q, Zhang L L, Xu F F, Shi X, and Chen L D 2018 Ceram. Int. 44 13076 | Multiple phase transitions and structural oscillations in thermoelectric Cu2S at elevating temperatures
[54] | Yang L, Chen Z G, Han G, Hong M, and Zou J 2016 Acta Mater. 113 140 | Impacts of Cu deficiency on the thermoelectric properties of Cu2−XSe nanoplates
[55] | Su X L, Fu F, Yan Y G, Zheng G, Liang T, Zhang Q, Cheng X, Yang D W, Chi H, Tang X F, Zhang Q J, and Uher C 2014 Nat. Commun. 5 4908 | Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing
[56] | Tak J Y, Nam W H, Lee C, Kim S, Lim Y S, Ko K, Lee S, Seo W S, Cho H K, Shim J H, Park C H 2018 Chem. Mater. 30 3276 | Ultralow Lattice Thermal Conductivity and Significantly Enhanced Near-Room-Temperature Thermoelectric Figure of Merit in α-Cu 2 Se through Suppressed Cu Vacancy Formation by Overstoichiometric Cu Addition
[57] | Emin D 1999 Phys. Rev. B 59 6205 | Enhanced Seebeck coefficient from carrier-induced vibrational softening