[1] | DiVincenzo D P 2000 Fortschr. Phys. 48 771 | The Physical Implementation of Quantum Computation
[2] | DiVincenzo D P 2009 Phys. Scr. T137 014020 | Fault-tolerant architectures for superconducting qubits
[3] | Steffen L, Salathe Y, Oppliger M, Kurpiers P, Baur M, Lang C, Eichler C, Puebla-Hellmann G, Fedorov A, and Wallraff A 2013 Nature 500 319 | Deterministic quantum teleportation with feed-forward in a solid state system
[4] | Barends R, Kelly J, Megrant A et al. 2014 Nature 508 500 | Superconducting quantum circuits at the surface code threshold for fault tolerance
[5] | Kelly J, Barends R, Fowler A G et al. 2015 Nature 519 66 | State preservation by repetitive error detection in a superconducting quantum circuit
[6] | Johnson J E, Macklin C, Slichter D H, Vijay R, Weingarten E B, Clarke J, and Siddiqi I 2012 Phys. Rev. Lett. 109 050506 | Heralded State Preparation in a Superconducting Qubit
[7] | Ristè D, van Leeuwen J G, Ku H S, Lehnert K W, and DiCarlo L 2012 Phys. Rev. Lett. 109 050507 | Initialization by Measurement of a Superconducting Quantum Bit Circuit
[8] | Geerlings K, Leghtas Z, Pop I M, Shankar S, Frunzio L, Schoelkopf R J, Mirrahimi M, and Devoret M H 2013 Phys. Rev. Lett. 110 120501 | Demonstrating a Driven Reset Protocol for a Superconducting Qubit
[9] | Magnard P, Kurpiers P, Royer B, Walter T, Besse J C, Gasparinetti S, Pechal M, Heinsoo J, Storz S, Blais A, and Wallraff A 2018 Phys. Rev. Lett. 121 060502 | Fast and Unconditional All-Microwave Reset of a Superconducting Qubit
[10] | Arute F, Arya K, Babbush R et al. 2019 Nature 574 505 | Quantum supremacy using a programmable superconducting processor
[11] | Kandala A, Temme K, Córcoles A D, Mezzacapo A, Chow J M, and Gambetta J M 2019 Nature 567 491 | Error mitigation extends the computational reach of a noisy quantum processor
[12] | Tannu S S and Qureshi M K 2019 Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS '19 (Association for Computing Machinery, New York, NY, USA) pp 987–999 | Not All Qubits Are Created Equal
[13] | Tannu S S and Qureshi M K 2019 Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO '52 (Association for Computing Machinery, New York, NY, USA) pp 279–290 |
[14] | Lupaşcu A, Saito S, Picot T, de Groot P C, Harmans C J P M, and Mooij J E 2007 Nat. Phys. 3 119 | Quantum non-demolition measurement of a superconducting two-level system
[15] | Picot T, Schouten R, Harmans C J P M, and Mooij J E 2010 Phys. Rev. Lett. 105 040506 | Quantum Nondemolition Measurement of a Superconducting Qubit in the Weakly Projective Regime
[16] | Nakajima T, Noiri A, Yoneda J, Delbecq M R, Stano P, Otsuka T, Takeda K, Amaha S, Allison G, Kawasaki K, Ludwig A, Wieck A D, Loss D, and Tarucha S 2019 Nat. Nanotechnol. 14 555 | Quantum non-demolition measurement of an electron spin qubit
[17] | Raha M, Chen S, Phenicie C M, Ourari S, Dibos A M, and Thompson J D 2020 Nat. Commun. 11 1605 | Optical quantum nondemolition measurement of a single rare earth ion qubit
[18] | Ristè D, Poletto S, Huang M Z, Bruno A, Vesterinen V, Saira O P, and DiCarlo L 2015 Nat. Commun. 6 6983 | Detecting bit-flip errors in a logical qubit using stabilizer measurements
[19] | Hacohen-Gourgy S, Martin L S, Flurin E, Ramasesh V V, Whaley K B, and Siddiqi I 2016 Nature 538 491 | Quantum dynamics of simultaneously measured non-commuting observables
[20] | Blais A, Huang R S, Wallraff A, Girvin S M, and Schoelkopf R J 2004 Phys. Rev. A 69 062320 | Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation
[21] | Mallet F, Ong F R, Palacios-Laloy A, Nguyen F, Bertet P, Vion D, and Esteve D 2009 Nat. Phys. 5 791 | Single-shot qubit readout in circuit quantum electrodynamics
[22] | Walter T, Kurpiers P, Gasparinetti S et al. 2017 Phys. Rev. Appl. 7 054020 | Rapid High-Fidelity Single-Shot Dispersive Readout of Superconducting Qubits
[23] | Wang X, Miranowicz A, and Nori F 2019 Phys. Rev. Appl. 12 064037 | Ideal Quantum Nondemolition Readout of a Flux Qubit without Purcell Limitations
[24] | Clerk A, Girvin S, and Stone A D 2003 Phys. Rev. B 67 165324 | Quantum-limited measurement and information in mesoscopic detectors
[25] | Clerk A A, Devoret M H, Girvin S M, Marquardt F, and Schoelkopf R J 2010 Rev. Mod. Phys. 82 1155 | Introduction to quantum noise, measurement, and amplification
[26] | Blais A, Grimsmo A L, Girvin S M, and Wallraff A 2021 Rev. Mod. Phys. 93 025005 | Circuit quantum electrodynamics
[27] | Ikonen J, Goetz J, Ilves J et al. 2019 Phys. Rev. Lett. 122 080503 | Qubit Measurement by Multichannel Driving
[28] | Touzard S, Kou A, Frattini N E et al. 2019 Phys. Rev. Lett. 122 080502 | Gated Conditional Displacement Readout of Superconducting Qubits
[29] | Reed M D, DiCarlo L, Johnson B R et al. 2010 Phys. Rev. Lett. 105 173601 | High-Fidelity Readout in Circuit Quantum Electrodynamics Using the Jaynes-Cummings Nonlinearity
[30] | Boissonneault M, Gambetta J M, and Blais A 2010 Phys. Rev. Lett. 105 100504 | Improved Superconducting Qubit Readout by Qubit-Induced Nonlinearities
[31] | Gao J and Zmuidzinas J 2008 The Physics of Superconducting Microwave Resonators, CIT theses (California Institute of Technology) |
[32] | Bradley R 2018 Proceedings of the 2nd International Workshop (Part of the Springer Proceedings in Physics book series, SPPHY) vol 211 p 39 | Springer Proceedings in Physics
[33] | Kokkoniemi R, Ollikainen T, Lake R E et al. 2017 Sci. Rep. 7 14713 | Flux-tunable phase shifter for microwaves
[34] | Zhang J, Li T, Kokkoniemi R et al. 2020 AIP Adv. 10 065128 | Broadband tunable phase shifter for microwaves
[35] | Naaman O, Strong J A, Ferguson D G et al. 2017 J. Appl. Phys. 121 073904 | Josephson junction microwave modulators for qubit control
[36] | Eder P, Ramos T, Goetz J et al. 2018 Supercond. Sci. Technol. 31 115002 | Quantum probe of an on-chip broadband interferometer for quantum microwave photonics
[37] | Pogorzalek S, Fedorov K G, Xu M et al. 2019 Nat. Commun. 10 2604 | Secure quantum remote state preparation of squeezed microwave states
[38] | Probst S, Song F B, Bushev P A et al. 2015 Rev. Sci. Instrum. 86 024706 | Efficient and robust analysis of complex scattering data under noise in microwave resonators
[39] | Krantz P, Bengtsson A, Simoen M et al. 2016 Nat. Commun. 7 11417 | Single-shot read-out of a superconducting qubit using a Josephson parametric oscillator
[40] | Krantz P, Kjaergaard M, Yan F et al. 2019 Appl. Phys. Rev. 6 021318 | A quantum engineer's guide to superconducting qubits
[41] | Kjaergaard M, Schwartz M E, Braumüller J et al. 2020 Annu. Rev. Condens. Matter Phys. 11 369 | Superconducting Qubits: Current State of Play
[42] | Place A P M, Rodgers L V H, Mundada P et al. 2021 Nat. Commun. 12 1779 | New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds