[1] | Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 | Topological insulators and superconductors
[2] | Alicea J 2012 Rep. Prog. Phys. 75 076501 | New directions in the pursuit of Majorana fermions in solid state systems
[3] | Leijnse M and Flensberg K 2012 Semicond. Sci. Technol. 27 124003 | Introduction to topological superconductivity and Majorana fermions
[4] | Beenakker C W J 2013 Annu. Rev. Condens. Matter Phys. 4 113 | Search for Majorana Fermions in Superconductors
[5] | Stanescu T D and Tewari S 2013 J. Phys.: Condens. Matter 25 233201 | Majorana fermions in semiconductor nanowires: fundamentals, modeling, and experiment
[6] | Aguado R 2017 Riv. Nuovo Cimento 40 523 | Majorana quasiparticles in condensed matter
[7] | Sato M and Ando Y 2017 Rep. Prog. Phys. 80 076501 | Topological superconductors: a review
[8] | Mackenzie A P and Maeno Y 2003 Rev. Mod. Phys. 75 657 | The superconductivity of and the physics of spin-triplet pairing
[9] | Fu L and Berg E 2010 Phys. Rev. Lett. 105 097001 | Odd-Parity Topological Superconductors: Theory and Application to
[10] | Sato M 2010 Phys. Rev. B 81 220504 | Topological odd-parity superconductors
[11] | Hsieh T H and Fu L 2012 Phys. Rev. Lett. 108 107005 | Majorana Fermions and Exotic Surface Andreev Bound States in Topological Superconductors: Application to
[12] | Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407 | Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator
[13] | Alicea J 2010 Phys. Rev. B 81 125318 | Majorana fermions in a tunable semiconductor device
[14] | Sau J D, Lutchyn R M, Tewari S, and Sarma S D 2010 Phys. Rev. Lett. 104 040502 | Generic New Platform for Topological Quantum Computation Using Semiconductor Heterostructures
[15] | Lutchyn R M, Sau J D, and Sarma S D 2010 Phys. Rev. Lett. 105 077001 | Majorana Fermions and a Topological Phase Transition in Semiconductor-Superconductor Heterostructures
[16] | Lutchyn R M, Bakkers E P, Kouwenhoven L P, Krogstrup P, Marcus C M, and Oreg Y 2018 Nat. Rev. Mater. 3 52 | Majorana zero modes in superconductor–semiconductor heterostructures
[17] | Frolov S M, Manfra M J, and Sau J D 2020 Nat. Phys. 16 718 | Topological superconductivity in hybrid devices
[18] | Kashiwaya S, Kashiwaya H, Kambara H, Furuta T, Yaguchi H, Tanaka Y, and Maeno Y 2011 Phys. Rev. Lett. 107 077003 | Edge States of Detected by In-Plane Tunneling Spectroscopy
[19] | Jang J, Ferguson D G, Vakaryuk V, Budakian R, Chung S B, Goldbart P M, and Maeno Y 2011 Science 331 186 | Observation of Half-Height Magnetization Steps in Sr2RuO4
[20] | Hor Y S, Williams A J, Checkelsky J G, Roushan P, Seo J, Xu Q, Zandbergen H W, Yazdani A, Ong N P, and Cava R J 2010 Phys. Rev. Lett. 104 057001 | Superconductivity in and its Implications for Pairing in the Undoped Topological Insulator
[21] | Wray L A, Xu S Y, Xia Y, Hor Y S, Qian D, Fedorov A V, Lin H, Bansil A, Cava R J, and Hasan M Z 2010 Nat. Phys. 6 855 | Observation of topological order in a superconducting doped topological insulator
[22] | Sasaki S, Kriener M, Segawa K, Yada K, Tanaka Y, Sato M, and Ando Y 2011 Phys. Rev. Lett. 107 217001 | Topological Superconductivity in
[23] | Matano S, Kriener M, Segawa K, Ando Y, and Zheng G Q 2016 Nat. Phys. 12 852 | Spin-rotation symmetry breaking in the superconducting state of CuxBi2Se3
[24] | Yonezawa S, Tajiri K, Nakata S, Nagai Y, Wang Z, Segawa K, Ando Y, and Maeno Y 2017 Nat. Phys. 13 123 | Thermodynamic evidence for nematic superconductivity in CuxBi2Se3
[25] | Liu Z, Yao X, Shao J, Zuo M, Pi L, Tan S, Zhang C, and Zhang Y 2015 J. Am. Chem. Soc. 137 10512 | Superconductivity with Topological Surface State in Sr x Bi 2 Se 3
[26] | Williams J R, Bestwick A J, Gallagher P, Hong S S, Cui Y, Bleich A S, Analytis J G, Fisher I R, and Goldhaber-Gordon D 2012 Phys. Rev. Lett. 109 056803 | Unconventional Josephson Effect in Hybrid Superconductor-Topological Insulator Devices
[27] | Wang M X, Liu C, Xu J P, Yang F, Miao L, Yao M Y, Gao C L, Shen C, Ma X, Chen X et al. 2012 Science 336 52 | The Coexistence of Superconductivity and Topological Order in the Bi 2 Se 3 Thin Films
[28] | Wang E, Ding H, Fedorov A V, Yao W, Li Z, Lv Y F, Zhao K, Zhang L G, Xu Z, Schneeloch J et al. 2013 Nat. Phys. 9 621 | Fully gapped topological surface states in Bi2Se3 films induced by a d-wave high-temperature superconductor
[29] | Cho S, Dellabetta B, Yang A, Schneeloch J, Xu Z, Valla T, Gu G, Gilbert M J, and Mason N 2013 Nat. Commun. 4 1689 | Symmetry protected Josephson supercurrents in three-dimensional topological insulators
[30] | Oostinga J B, Maier L, Schüffelgen P, Knott D, Ames C, Brüne C, Tkachov G, Buhmann H, and Molenkamp L W 2013 Phys. Rev. X 3 021007 | Josephson Supercurrent through the Topological Surface States of Strained Bulk HgTe
[31] | Finck A D K, Kurter C, Hor Y S, and Van Harlingen D J 2014 Phys. Rev. X 4 041022 | Phase Coherence and Andreev Reflection in Topological Insulator Devices
[32] | Hart S, Ren H, Wagner T, Leubner P, Mühlbauer M, Brüne C, Buhmann H, Molenkamp L W, and Yacoby A 2014 Nat. Phys. 10 638 | Induced superconductivity in the quantum spin Hall edge
[33] | Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P, and Kouwenhoven L P 2012 Science 336 1003 | Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices
[34] | Rokhinson L P, Liu X, and Furdyna J K 2012 Nat. Phys. 8 795 | The fractional a.c. Josephson effect in a semiconductor–superconductor nanowire as a signature of Majorana particles
[35] | Das A, Ronen Y, Most Y, Oreg Y, Heiblum M, and Shtrikman H 2012 Nat. Phys. 8 887 | Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions
[36] | Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P, and Xu H Q 2012 Nano Lett. 12 6414 | Anomalous Zero-Bias Conductance Peak in a Nb–InSb Nanowire–Nb Hybrid Device
[37] | Churchill H O H, Fatemi V, Grove-Rasmussen K, Deng M T, Caroff P, Xu H Q, and Marcus C M 2013 Phys. Rev. B 87 241401 | Superconductor-nanowire devices from tunneling to the multichannel regime: Zero-bias oscillations and magnetoconductance crossover
[38] | Finck A D K, Van Harlingen D J, Mohseni P K, Jung K, and Li X 2013 Phys. Rev. Lett. 110 126406 | Anomalous Modulation of a Zero-Bias Peak in a Hybrid Nanowire-Superconductor Device
[39] | Lee E J, Jiang X, Houzet M, Aguado R, Lieber C M, and De Franceschi S 2014 Nat. Nanotechnol. 9 79 | Spin-resolved Andreev levels and parity crossings in hybrid superconductor–semiconductor nanostructures
[40] | Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, and Yazdani A 2014 Science 346 602 | Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor
[41] | Albrecht S M, Higginbotham A P, Madsen M, Kuemmeth F, Jespersen T S, Nygård J, Krogstrup P, and Marcus C M 2016 Nature 531 206 | Exponential protection of zero modes in Majorana islands
[42] | Deng M T, Vaitiekėnas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygård J, Krogstrup P, and Marcus C M 2016 Science 354 1557 | Majorana bound state in a coupled quantum-dot hybrid-nanowire system
[43] | Zhang H, Gül Ö, Conesa-Boj S, Nowak M P, Wimmer M, Zuo K, Mourik V, De Vries F K, Van Veen J, De Moor M W et al. 2017 Nat. Commun. 8 16025 | Ballistic superconductivity in semiconductor nanowires
[44] | Zhang H, Liu C X, Gazibegovic S, Di X, Logan J A, Wang G, Van Loo N, Bommer J D, De Moor M W, Car D et al. 2018 Nature 556 74 | RETRACTED ARTICLE: Quantized Majorana conductance
[45] | Yuan Y, Pan J, Wang X, Fang Y, Song C, Wang L, He K, Ma X, Zhang H, Huang F, Li W, and Xue Q K 2019 Nat. Phys. 15 1046 | Evidence of anisotropic Majorana bound states in 2M-WS2
[46] | Chen C, Liang A, Liu S, Nie S, Huang J, Wang M, Li Y, Pei D et al. 2020 Matter 3 2055 | Observation of Topological Electronic Structure in Quasi-1D Superconductor TaSe3
[47] | Liu Q, Chen C, Zhang T, Peng R, Yan Y J, Lou X et al. 2018 Phys. Rev. X 8 041056 | Robust and Clean Majorana Zero Mode in the Vortex Core of High-Temperature Superconductor
[48] | Neupane M, Alidoust N, Hosen M M et al. 2016 Nat. Commun. 7 13315 | Observation of the spin-polarized surface state in a noncentrosymmetric superconductor BiPd
[49] | Huang K and Luo A Y, Chen C et al. 2021 Phys. Rev. B 103 155148 | Observation of topological Dirac fermions and surface states in superconducting
[50] | Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T et al. 2018 Science 360 182 | Observation of topological superconductivity on the surface of an iron-based superconductor
[51] | Wang D, Kong L, Fan P, Chen H, Zhu S et al. 2018 Science 362 333 | Evidence for Majorana bound states in an iron-based superconductor
[52] | Gray M J, Freudenstein J, Zhao S Y F, Connor R O, Jenkins S et al. 2019 Nano Lett. 19 4890 | Evidence for Helical Hinge Zero Modes in an Fe-Based Superconductor
[53] | Machida T, Sun Y, Pyon S, Takeda S, Kohsaka Y, Hanaguri T, Sasagawa T, and Tamegai T 2002 Nat. Mater. 1 1 | Our changing nature
[54] | Kong L, Zhu S, Papaj M, Chen H, Cao L, Isobe H, Xing Y, Liu W, Wang D, Fan P et al. 2019 Nat. Phys. 15 1181 | Half-integer level shift of vortex bound states in an iron-based superconductor
[55] | Wang Z, Rodriguez J O, Jiao L, Howard S, Graham M, Gu G D, Hughes T L, Morr D K, and Madhavan V 2020 Science 367 104 | Evidence for dispersing 1D Majorana channels in an iron-based superconductor
[56] | Zhu S, Kong L, Cao L, Chen H, Papaj M et al. 2020 Science 367 189 | Nearly quantized conductance plateau of vortex zero mode in an iron-based superconductor
[57] | Kawakami T and Sato M 2019 Phys. Rev. B 100 094520 | Topological crystalline superconductivity in Dirac semimetal phase of iron-based superconductors
[58] | Zhang P, Wang Z, Wu X, Yaji K, Ishida Y et al. 2019 Nat. Phys. 15 41 | Multiple topological states in iron-based superconductors
[59] | Aggarwal L, Gaurav A, Thakur G S, Haque Z, Ganguli A K, and Sheet G 2016 Nat. Mater. 15 32 | Unconventional superconductivity at mesoscopic point contacts on the 3D Dirac semimetal Cd3As2
[60] | Wang H, Wang H, Liu H, Lu H, Yang W, Jia S, Liu X J, Xie X C, Wei J, and Wang J 2016 Nat. Mater. 15 38 | Observation of superconductivity induced by a point contact on 3D Dirac semimetal Cd3As2 crystals
[61] | He L, Jia Y, Zhang S, Hong X, Jin C, and Li S 2016 npj Quantum Mater. 1 16014 | Pressure-induced superconductivity in the three-dimensional topological Dirac semimetal Cd3As2
[62] | Luo X, Shao D F, Pei Q L, Song J Y, Hu L, Han Y Y, Zhu X B, Song W H, Lu W J, and Sun Y P 2015 J. Mater. Chem. C 3 11432 | Superconductivity in CaSn 3 single crystals with a AuCu 3 -type structure
[63] | Zhu Y L, Hu J, Womack F N, Graf D, Wang Y, Adams P W, and Mao Z Q 2019 J. Phys.: Condens. Matter 31 245703 | Emergence of intrinsic superconductivity below 1.178 K in the topologically non-trivial semimetal state of CaSn 3
[64] | Siddiquee K H, Munir R, Dissanayake C, Hu X, Yadav S, Takano Y, Choi E S, Le D, Rahman T S, and Nakajima Y 2021 J. Phys.: Condens. Matter 33 17LT01 | Fermi surfaces of the topological semimetal CaSn 3 probed through de Haas van Alphen oscillations
[65] | Zhang G, Shi X, Liu X, Xia W, Su H, Chen L, Wang X, Yu N, Zou Z, Zhao W et al. 2020 Chin. Phys. Lett. 37 087101 | de Haas-van Alphen Quantum Oscillations in BaSn 3 Superconductor with Multiple Dirac Fermions
[66] | Guechi A, Chegaar M, Bouhemadou A, and Arab F 2021 Solid State Commun. 323 114110 | Structural, mechanical and phonons properties of binary intermetallic compound BaSn3 under pressure
[67] | Fässler T F and Kronseder C 1997 Angew. Chem. Int. Ed. 36 2683 | BaSn3: A Superconductor at the Border of Zintl Phases and Intermetallic Compounds. Real-Space Analysis of Band Structures
[68] | Yang Y C, Liu Z T, Liu J S, Liu Z H, Liu W L et al. 2021 Nucl. Sci. Tech. 32 31 | High-resolution ARPES endstation for in situ electronic structure investigations at SSRF