[1] | Greiner M, Mandel O, Esslinger T, Hänsch T W, and Bloch I 2002 Nature 415 39 | Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms
[2] | Léonard J, Morales A, Zupancic P, Donner T, and Esslinger T 2017 Science 358 1415 | Monitoring and manipulating Higgs and Goldstone modes in a supersolid quantum gas
[3] | Clark L W, Feng L, and Chin C 2016 Science 354 606 | Universal space-time scaling symmetry in the dynamics of bosons across a quantum phase transition
[4] | Braun S, Friesdorf M, Hodgman S S, Schreiber M, Ronzheimer J P, Riera A, del Rey M, Bloch I, Eisert J, and Schneider U 2015 Proc. Natl. Acad. Sci. USA 112 3641 | Emergence of coherence and the dynamics of quantum phase transitions
[5] | Lee C H, Huang J H, Deng H M, Dai H, and Xu J 2012 Front. Phys. 7 109 | Nonlinear quantum interferometry with Bose condensed atoms
[6] | Gross C, Zibold T, Nicklas E, Estève J, and Oberthaler M K 2010 Nature 464 1165 | Nonlinear atom interferometer surpasses classical precision limit
[7] | Lee C H 2006 Phys. Rev. Lett. 97 150402 | Adiabatic Mach-Zehnder Interferometry on a Quantized Bose-Josephson Junction
[8] | SøR A, Duan L M, Cirac J I, and Zoller P 2001 Nature 409 63 | Many-particle entanglement with Bose–Einstein condensates
[9] | Léonard J, Morales A, Zupancic P, Esslinger T, and Donner T 2017 Nature 543 87 | Supersolid formation in a quantum gas breaking a continuous translational symmetry
[10] | Ji S C, Zhang J Y, Zhang L, Du Z D, Zheng W, Deng Y J, Zhai H, Chen S, and Pan J W 2014 Nat. Phys. 10 314 | Experimental determination of the finite-temperature phase diagram of a spin–orbit coupled Bose gas
[11] | Dai H N, Yang B, Reingruber A, Xu X F, Jiang X, Chen Y A, Yuan Z S, and Pan J W 2016 Nat. Phys. 12 783 | Generation and detection of atomic spin entanglement in optical lattices
[12] | Yang B, Chen Y Y, Zheng Y G, Sun H, Dai H N, Guan X W, Yuan Z S, and Pan J W 2017 Phys. Rev. Lett. 119 165701 | Quantum criticality and the Tomonaga-Luttinger liquid in one-dimensional Bose gases
[13] | Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y J, Chen S, Liu X J, and Pan J W 2016 Science 354 83 | Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates
[14] | Peng P, Huang L H, Li D H, Wang P J, Meng Z M, Zhang J 2018 Chin. Phys. Lett. 35 063201 | Influence on the Lifetime of $^{87}$Rb Bose–Einstein Condensation for Far-Detuning Single-Frequency Lasers with Different Phase Noises
[15] | Nawaz K S, Mi C D, Chen L C, Wang P J, and Zhang J 2019 Chin. Phys. Lett. 36 043201 | Experimental Investigation of the Electromagnetically Induced-Absorption-Like Effect for an N-Type Energy Level in a Rubidium BEC
[16] | Chen L C, Wang P J, Meng Z M, Huang L H, Cai H, Wang D W, Zhu S Y, and Zhang J 2018 Phys. Rev. Lett. 120 193601 | Experimental Observation of One-Dimensional Superradiance Lattices in Ultracold Atoms
[17] | Yang S F, Xu Z T, Wang K, Li X F, Zhai Y Y, and Chen X Z 2019 Chin. Phys. Lett. 36 080302 | A Quasi-1D Potential for Bose Gas Phase Fluctuations
[18] | Yang S F, Zhou T W, Li C, Yang K X, Zhai Y Y, Yue X G, and Chen X Z 2020 Chin. Phys. Lett. 37 040301 | Superfluid-Mott-Insulator Transition in an Optical Lattice with Adjustable Ensemble-Averaged Filling Factors
[19] | Chen S, Zhou X J, Yang F, Xia L, Wang Y Q, and Chen X Z 2004 Chin. Phys. Lett. 21 2227 | Optimization of the Loading Process of the QUIC Magnetic Trap for the Experiment of Bose–Einstein Condensation
[20] | Tang P J, Peng P, Li Z H, Chen X Z, Li X P, and Zhou X J 2019 Phys. Rev. A 100 013618 | Parallel multicomponent interferometer with a spinor Bose-Einstein condensate
[21] | Deng L, Hagley E W, Cao Q, Wang X R, Luo X Y, Wang R Q, Payne M G, Yang F, Zhou X J, Chen X Z, and Zhan M S 2010 Phys. Rev. Lett. 105 220404 | Observation of a Red-Blue Detuning Asymmetry in Matter-Wave Superradiance
[22] | Zhang D F, Gao T Y, Zou P, Kong L R, Li R Z, Shen X, Chen X L, Peng S G, Zhan M S, Pu H, and Jiang K J 2019 Phys. Rev. Lett. 122 110402 | Ground-State Phase Diagram of a Spin-Orbital-Angular-Momentum Coupled Bose-Einstein Condensate
[23] | Deng S J, Shi Z Y, Diao P P, Yu Q L, Zhai H, Qi R, and Wu H B 2016 Science 353 371 | Observation of the Efimovian expansion in scale-invariant Fermi gases
[24] | Li B, Jiang X J, Li X L, Hai W H, and Wang Y Z 2019 Chin. Phys. B 28 100303 | Manipulating transition of a two-component Bose–Einstein condensate with a weak δ -shaped laser
[25] | Hu Z F, Liu C P, Liu J M, and Wang Y Z 2018 Opt. Express 26 20122 | Electromagnetically induced transparency in a spin-orbit coupled Bose-Einstein condensate
[26] | Gao K Y, Luo X Y, Jia F D, Yu C H, Zhang F, Yin J P, Xu L, You L, and Wang R Q 2014 Chin. Phys. Lett. 31 063701 | Ultra-High Efficiency Magnetic Transport of 87Rb Atoms in a Single Chamber Bose—Einstein Condensation Apparatus
[27] | Luo X Y, Zou Y Q, Wu L N, Liu Q, Han M F, Tey M K, and You L 2017 Science 355 620 | Deterministic entanglement generation from driving through quantum phase transitions
[28] | Qiu L Y, Liang H Y, Yang Y B, Yang H X, Tian T, Xu Y, and Duan L M 2020 Sci. Adv. 6 eaba7292 | Observation of generalized Kibble-Zurek mechanism across a first-order quantum phase transition in a spinor condensate
[29] | Anderson M H, Ensher J R, Matthews M R, Wieman C E, and Cornell E A 1995 Science 269 198 | Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor
[30] | Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, and Ketterle W 1995 Phys. Rev. Lett. 75 3969 | Bose-Einstein Condensation in a Gas of Sodium Atoms
[31] | Mewes M O, Andrews M R, van Druten N J, Kurn D M, Durfee D S, and Ketterle W 1996 Phys. Rev. Lett. 77 416 | Bose-Einstein Condensation in a Tightly Confining dc Magnetic Trap
[32] | Esslinger T, Bloch I, and Hänsch T W 1998 Phys. Rev. A 58 R2664 | Bose-Einstein condensation in a quadrupole-Ioffe-configuration trap
[33] | Wang Y Z, Zhou S Y, Long Q, Zhou S Y, and Fu H X 2003 Chin. Phys. Lett. 20 799 | Evidence for a Bose-Einstein Condensate in Dilute Rb Gas by Absorption Image in a Quadrupole and Ioffe Configuration Trap
[34] | Wang R Q, Liu M C, Minardi F, and Kasevich M 2007 Phys. Rev. A 75 013610 | Reaching quantum degeneracy with a minitrap
[35] | Yan B, Cheng F, Ke M, Li X L, Tang J Y, and Wang Y Z 2009 Chin. Phys. B 18 4259 | Bose–Einstein condensation on an atom chip
[36] | Fortagh J, Grossmann A, Zimmermann C, and Hänsch T W 1998 Phys. Rev. Lett. 81 5310 | Miniaturized Wire Trap for Neutral Atoms
[37] | Grimm R, Weidemüller M, and Ovchinnikov Y B 2000 Adv. At. Mol. Opt. Phys. 42 95 | Advances In Atomic, Molecular, and Optical Physics
[38] | Barrett M D, Sauer J A, and Chapman M S 2001 Phys. Rev. Lett. 87 010404 | All-Optical Formation of an Atomic Bose-Einstein Condensate
[39] | Weber T, Herbig J, Mark M, Nägerl H C, and Grimm R 2003 Science 299 232 | Bose-Einstein Condensation of Cesium
[40] | Fazal R, Li J Z, Chen Z W, Qin Y, Lin Y Y, Zhang Z X, Zhang S C, Huang W, Yan H, and Zhu S L 2020 Chin. Phys. Lett. 37 036701 | Production of $^{87}$Rb Bose–Einstein Condensate with a Simple Evaporative Cooling Method
[41] | Rychtarik D, Engeser B, Nägerl H C, and Grimm R 2004 Phys. Rev. Lett. 92 173003 | Two-Dimensional Bose-Einstein Condensate in an Optical Surface Trap
[42] | Kinoshita T, Wenger T, and Weiss D S 2005 Phys. Rev. A 71 011602(R) | All-optical Bose-Einstein condensation using a compressible crossed dipole trap
[43] | Lin Y J, Perry A R, Compton R L, Spielman I B, and Porto J V 2009 Phys. Rev. A 79 063631 | Rapid production of Bose-Einstein condensates in a combined magnetic and optical potential
[44] | Duan Y F, Jiang B N, Sun J F, Liu K K, Xu Z, and Wang Y Z 2013 Chin. Phys. B 22 056701 | Production of 87 Rb Bose—Einstein condensates in a hybrid trap
[45] | Xie D Z, Wang D Y, Gou W, Bu W H, and Yan B 2018 J. Opt. Soc. Am. B 35 500 | Fast production of rubidium Bose–Einstein condensate in a dimple trap
[46] | Hung C L, Zhang X B, Gemelke N, and Chin C 2008 Phys. Rev. A 78 011604(R) | Accelerating evaporative cooling of atoms into Bose-Einstein condensation in optical traps
[47] | Huang C Y, Chen C C, Sun L A, Liao G B, Wu K S, Lin Y J, and Chang M S 2017 J. Phys. B 50 155302 | A simple recipe for rapid all-optical formation of spinor Bose–Einstein condensates
[48] | Jacob D, Mimoun E, De Sarlo L, Weitz M, Dalibard J, and Gerbier F 2011 New J. Phys. 13 065022 | Production of sodium Bose–Einstein condensates in an optical dimple trap
[49] | Olson A J, Niffenegger R J, and Chen Y P 2013 Phys. Rev. A 87 053613 | Optimizing the efficiency of evaporative cooling in optical dipole traps
[50] | Zhang S C, Chen J F, Liu C, Zhou S Y, Loy M M T, Wong G K L, and Du S W 2012 Rev. Sci. Instrum. 83 073102 | A dark-line two-dimensional magneto-optical trap of 85 Rb atoms with high optical depth
[51] | Walker T, Sesko D, and Wieman C 1990 Phys. Rev. Lett. 64 408 | Collective behavior of optically trapped neutral atoms
[52] | Townsend C G, Edwards N H, Zetie K P, Cooper C J, Rink J, and Foot C J 1996 Phys. Rev. A 53 1702 | High-density trapping of cesium atoms in a dark magneto-optical trap
[53] | Niu L X, Guo X X, Zhan Y, Chen X Z, Liu W M, and Zhou X J 2018 Appl. Phys. Lett. 113 144103 | Optimized fringe removal algorithm for absorption images