[1] | Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S, and Oliver W D 2019 Appl. Phys. Rev. 6 021318 | A quantum engineer's guide to superconducting qubits
[2] | Buluta I and Nori F 2009 Science 326 108 | Quantum Simulators
[3] | Houck A A, Türeci H, and Koch J 2012 Nat. Phys. 8 292 | On-chip quantum simulation with superconducting circuits
[4] | Georgescu I M, Ashhab S, and Nori F 2014 Rev. Mod. Phys. 86 153 | Quantum simulation
[5] | Devoret M H and Schoelkopf R J 2013 Science 339 1169 | Superconducting Circuits for Quantum Information: An Outlook
[6] | Campbell E T, Terhal B M, and Vuillot C 2017 Nature 549 172 | Roads towards fault-tolerant universal quantum computation
[7] | Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M, and Schoelkopf R J 2007 Phys. Rev. A 76 042319 | Charge-insensitive qubit design derived from the Cooper pair box
[8] | Barends R, Kelly J, Megrant A, Sank D, Jeffrey E, Chen Y, Yin Y, Chiaro B, Mutus J, Neill C, O'Malley P, Roushan P, Wenner J, White T C, Cleland A N, and Martinis J M 2013 Phys. Rev. Lett. 111 080502 | Coherent Josephson Qubit Suitable for Scalable Quantum Integrated Circuits
[9] | Martinis J M and Geller M R 2014 Phys. Rev. A 90 022307 | Fast adiabatic qubit gates using only control
[10] | Chen Y, Neill C, Roushan P, Leung N, Fang M, Barends R, Kelly J, Campbell B, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Megrant A, Mutus J Y, O'Malley P J J, Quintana C M, Sank D, Vainsencher A, Wenner J, White T C, Geller M R, Cleland A N, and Martinis J M 2014 Phys. Rev. Lett. 113 220502 | Qubit Architecture with High Coherence and Fast Tunable Coupling
[11] | Yan F, Krantz P, Sung Y, Kjaergaard M, Campbell D L, Orlando T P, Gustavsson S, and Oliver W D 2018 Phys. Rev. Appl. 10 054062 | Tunable Coupling Scheme for Implementing High-Fidelity Two-Qubit Gates
[12] | Niskanen A O, Harrabi K, Yoshihara F, Nakamura Y, Lloyd S, and Tsai J S 2007 Science 316 723 | Quantum Coherent Tunable Coupling of Superconducting Qubits
[13] | Hime T, Reichardt P A, Plourde B L T, Robertson T L, Wu C E, Ustinov A V, and Clarke J 2006 Science 314 1427 | Solid-State Qubits with Current-Controlled Coupling
[14] | Li X, Cai T, Yan H, Wang Z, Pan X, Ma Y, Cai W, Han J, Hua Z, Han X, Wu Y, Zhang H, Wang H, Song Y, Duan L, and Sun L 2020 Phys. Rev. Appl. 14 024070 | Tunable Coupler for Realizing a Controlled-Phase Gate with Dynamically Decoupled Regime in a Superconducting Circuit
[15] | Sung Y, Ding L, Braumüller J, Vepsäläinen A, Kannan B, Kjaergaard M, Greene A, Samach G O, McNally C, Kim D, Melville A, Niedzielski B M, Schwartz M E, Yoder J L, Orlando T P, Gustavsson S, and Oliver W D 2021 Phys. Rev. X 11 021058 | Realization of High-Fidelity CZ and -Free iSWAP Gates with a Tunable Coupler
[16] | Foxen B, Neill C, Dunsworth A, Roushan P, Chiaro B, Megrant A, Kelly J, Chen Z, Satzinger K, Barends R, Arute F, Arya K, Babbush R, Bacon D, Bardin J C, Boixo S, Buell D, Burkett B, Chen Y, Collins R, Farhi E, Fowler A, Gidney C, Giustina M, Graff R, Harrigan M, Huang T, Isakov S V, Jeffrey E, Jiang Z, Kafri D, Kechedzhi K, Klimov P, Korotkov A, Kostritsa F, Landhuis D, Lucero E, McClean J, McEwen M, Mi X, Mohseni M, Mutus J Y, Naaman O, Neeley M, Niu M, Petukhov A, Quintana C, Rubin N, Sank D, Smelyanskiy V, Vainsencher A, White T C, Yao Z, Yeh P, Zalcman A, Neven H, and Martinis J M (Google AI Quantum) 2020 Phys. Rev. Lett. 125 120504 | Demonstrating a Continuous Set of Two-qubit Gates for Near-term Quantum Algorithms
[17] | Collodo M C, Herrmann J, Lacroix N, Andersen C K, Remm A, Lazar S, Besse J C, Walter T, Wallraff A, and Eichler C 2020 Phys. Rev. Lett. 125 240502 | Implementation of Conditional Phase Gates Based on Tunable Interactions
[18] | Xu H, Li W L Z, Han J, Zhang J, Linghu K, Chen Y L M, Yang Z, Wang J, Ma T, Xue G, Jin Y, and Yu H 2021 Chin. Phys. B 30 044212 | Realization of adiabatic and diabatic CZ gates in superconducting qubits coupled with a tunable coupler*
[19] | Barends R, Quintana C M, Petukhov A G, Chen Y, Kafri D, Kechedzhi K, Collins R, Naaman O, Boixo S, Arute F, Arya K, Buell D, Burkett B, Chen Z, Chiaro B, Dunsworth A, Foxen B, Fowler A, Gidney C, Giustina M, Graff R, Huang T, Jeffrey E, Kelly J, Klimov P V, Kostritsa F, Landhuis D, Lucero E, McEwen M, Megrant A, Mi X, Mutus J, Neeley M, Neill C, Ostby E, Roushan P, Sank D, Satzinger K J, Vainsencher A, White T, Yao J, Yeh P, Zalcman A, Neven H, Smelyanskiy V N, and Martinis J M 2019 Phys. Rev. Lett. 123 210501 | Diabatic Gates for Frequency-Tunable Superconducting Qubits
[20] | Boixo S, Isakov S V, Smelyanskiy V N, Babbush R, Ding N, Jiang Z, Bremner M J, Martinis J M, and Neven H 2018 Nat. Phys. 14 595 | Characterizing quantum supremacy in near-term devices
[21] | Arute F, Arya K, Babbush R, Bacon D, Bardin J, Barends R, Biswas R, Boixo S, Brandao F, Buell D, Burkett B, Chen Y, Chen Z, Chiaro B, Collins R, Courtney W, Dunsworth A, Farhi E, Foxen B, and Martinis J 2019 Nature 574 505 | Quantum supremacy using a programmable superconducting processor
[22] | Mutus J Y, White T C, Barends R, Chen Y, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Kelly J, Megrant A, Neill C, O'Malley P J J, Roushan P, Sank D, Vainsencher A, Wenner J, Sundqvist K M, Cleland A N, and Martinis J M 2014 Appl. Phys. Lett. 104 263513 | Strong environmental coupling in a Josephson parametric amplifier
[23] | Johansson R, Nation P, and Nori F 2012 Comput. Phys. Commun. 183 1760 | QuTiP: An open-source Python framework for the dynamics of open quantum systems
[24] | Johansson R, Nation P, and Nori F 2013 Comput. Phys. Commun. 184 1234 | QuTiP 2: A Python framework for the dynamics of open quantum systems
[25] | Yan Z, Zhang Y R, Gong M, Wu Y, Zheng Y, Li S, Wang C, Liang F, Lin J, Xu Y, Guo C, Sun L, Peng C Z, Xia K, Deng H, Rong H, You J Q, Nori F, Fan H, Zhu X, and Pan J W 2019 Science 364 753 | Strongly correlated quantum walks with a 12-qubit superconducting processor
[26] | McKay D C, Wood C J, Sheldon S, Chow J M, and Gambetta J M 2017 Phys. Rev. A 96 022330 | Efficient gates for quantum computing