[1] | Kumaran C R, Tiwari B, Chandran M, Bhattacharya S S and Ramachandra R M S 2013 J. Nanopart. Res. 15 1509 | Effect of temperature on the stability of diamond particles and continuous thin films by Raman imaging
[2] | Meng D, Yue W, Lin F, Wang C and Wu Z 2015 J. Superhard Mater. 37 67 | Thermal stability of ultrahard polycrystalline diamond composite materials
[3] | Dong G Y, Yang X D, Li X B, Song X S and Cheng X L 2008 Diamond Relat. Mater. 17 1 | Systematics of elastic and thermodynamic properties of super-hardness cubic boron nitride under high pressure
[4] | Zhang Y, Sun H and Chen C 2006 Phys. Rev. B 73 144115 | Structural deformation, strength, and instability of cubic BN compared to diamond: A first-principles study
[5] | Liu H, Fan Q Y, Yang F, Yu X H, Zhang W and Yun S N 2020 Chin. Phys. B 29 106102 | t P40 carbon: A novel superhard carbon allotrope
[6] | Young A F, Sanloup C, Gregoryanz E, Scandolo S, Hemley R J and Mao H 2006 Phys. Rev. Lett. 96 155501 | Synthesis of Novel Transition Metal Nitrides and
[7] | Xu X, Chai C, Fan Q and Yang Y 2017 Chin. Phys. B 26 046101 | Theoretical prediction of new C–Si alloys in ${\boldsymbol{C}}2/{\boldsymbol{m}}$-20 structure
[8] | Ma Z, Wang P, Yan F, Shi C and Tian Y 2019 Chin. Phys. B 28 036101 | Physical properties of B 4 N 4 -I and B 4 N 4 -II: First-principles study
[9] | Crowhurst J C 2006 Science 311 1275 | Synthesis and Characterization of the Nitrides of Platinum and Iridium
[10] | Wang S, Yu X, Lin Z, Zhang R, He D, Qin J, Zhu J, Han J, Wang L, Mao H, Zhang J and Zhao Y 2012 Chem. Mater. 24 3023 | Synthesis, Crystal Structure, and Elastic Properties of Novel Tungsten Nitrides
[11] | Lu C, Li Q, Ma Y and Chen C 2017 Phys. Rev. Lett. 119 115503 | Extraordinary Indentation Strain Stiffening Produces Superhard Tungsten Nitrides
[12] | Solozhenko V L, Andrault D, Fiquet G, Mezouar M and Rubie D C 2001 Appl. Phys. Lett. 78 1385 | Synthesis of superhard cubic BC2N
[13] | Luo X, Zhou X F, Liu Z, He J, Xu B, Yu D, Wang H T and Tian Y 2008 J. Phys. Chem. C 112 9516 | Refined Crystal Structure and Mechanical Properties of Superhard BC 4 N Crystal: First-Principles Calculations
[14] | Qu N R, Wang H C, Li Q, Li Y D, Li Z P, Gou H Y and Gao F M 2019 Chin. Phys. B 28 096201 | Surperhard monoclinic BC 6 N allotropes: First-principles investigations
[15] | Wang S, Oganov A R, Qian G, Zhu Q, Dong H, Dong X and Davari E M M 2016 Phys. Chem. Chem. Phys. 18 1859 | Novel superhard B–C–O phases predicted from first principles
[16] | Pan Y, Xie C, Xiong M, Ma M, Liu L, Li Z, Zhang S, Gao G, Zhao Z, Tian Y, Xu B and He J 2017 Chem. Phys. Lett. 689 68 | A superhard sp3 microporous carbon with direct bandgap
[17] | Bundy F P and Kasper J S 1967 J. Chem. Phys. 46 3437 | Hexagonal Diamond—A New Form of Carbon
[18] | Guo W F, Wang L S, Li Z P, Xia M R and Gao F M 2015 Chin. Phys. Lett. 32 096201 | Urtra-Hard Bonds in P -Carbon Stronger than Diamond
[19] | Knotek O, Breidenbach R, Jungblut F and Löffler F 1990 Surf. Coat. Technol. 43–44 107 | Superhard Ti-B-C-N coatings
[20] | Wang D, Shi R and Gan L H 2017 Chem. Phys. Lett. 669 80 | t-C8B2N2: A potential superhard material
[21] | Li X and Peng F 2019 Phys. Chem. Chem. Phys. 21 15609 | Predicted superhard phases of Zr–B compounds under pressure
[22] | Gu Q, Krauss G and Steurer W 2008 Adv. Mater. 20 3620 | Transition Metal Borides: Superhard versus Ultra-incompressible
[23] | Zinin P V, Ming L C, Ishii H A, Jia R, Acosta T and Hellebrand E 2012 J. Appl. Phys. 111 114905 | Phase transition in BC x system under high-pressure and high-temperature: Synthesis of cubic dense BC 3 nanostructured phase
[24] | Solozhenko V L, Kurakevych O O, Andrault D, Le G Y and Mezouar M 2009 Phys. Rev. Lett. 102 015506 | Ultimate Metastable Solubility of Boron in Diamond: Synthesis of Superhard Diamondlike
[25] | Hu Y J, Xu S L, Wang H, Liu H, Xu X C and Cai Y X 2016 Chin. Phys. Lett. 33 106102 | Superhard BC 2 N: an Orthogonal Crystal Obtained by Transversely Compressing (3,0)-CNTs and (3,0)-BNNTs
[26] | Li Q, Wang M, Oganov A R, Cui T, Ma Y and Zou G 2009 J. Appl. Phys. 105 53514 | Rhombohedral superhard structure of BC2N
[27] | Qu N R, Wang H C, Li Q, Li Z P and Gao F M 2019 Chin. Phys. Lett. 36 036201 | An Orthorhombic Phase of Superhard o -BC 4 N *
[28] | Horvath-Bordon E, Riedel R, Zerr A, McMillan P F, Auffermann G, Prots Y, Bronger W, Kniep R and Kroll P 2006 Chem. Soc. Rev. 35 987 | High-pressure chemistry of nitride-based materials
[29] | Hao J, Liu H, Lei W, Tang X, Lu J, Liu D and Li Y 2015 J. Phys. Chem. C 119 28614 | Prediction of a Superhard Carbon-Rich C–N Compound Comparable to Diamond
[30] | Ma Z Y, Yan F, Wang S X, Jia Q Q, Yu X H and Shi C L 2017 Chin. Phys. B 26 126105 | Mechanical, elastic, anisotropy, and electronic properties of monoclinic phase of m -Si x Ge 3− x N 4
[31] | Li Y, Li Q and Ma Y 2011 Europhys. Lett. 95 66006 | B 2 CO: A potential superhard material in the B-C-O system
[32] | Gao Y, Ying P, Wu Y, Chen S, Ma M, Wang L, Zhao Z and Yu D 2019 J. Appl. Phys. 125 175108 | First-principles studies of superhard BC 8 N structures
[33] | Xu N, Li J F, Huang B L and Wang B L 2016 Chin. Phys. B 25 016103 | A new family of sp 3 -hybridized carbon phases
[34] | Long J, Shu C, Yang L and Yang M 2015 J. Alloys Compd. 644 638 | Predicting crystal structures and physical properties of novel superhard p-BN under pressure via first-principles investigation
[35] | Zhang Z, Lu M, Zhu L, Zhu L, Li Y, Zhang M and Li Q 2014 Phys. Lett. A 378 741 | Orthorhombic BN: A novel superhard boron nitride allotrope
[36] | Huang Q, Yu D, Zhao Z, Fu S, Xiong M, Wang Q, Gao Y, Luo K, He J and Tian Y 2012 J. Appl. Phys. 112 53518 | First-principles study of O-BN: A sp 3 -bonding boron nitride allotrope
[37] | Zhang X, Wang Y, Lv J, Zhu C, Li Q, Zhang M, Li Q and Ma Y 2013 J. Chem. Phys. 138 114101 | First-principles structural design of superhard materials
[38] | Jiang X, Zhao J and Ahuja R 2013 J. Phys.: Condens. Matter 25 122204 | A novel superhard BN allotrope under cold compression of h-BN
[39] | Li S, Shi L, Zhu H, Xia W and Wang Y 2019 Phys. Status Solidi 256 1800699 | Effects of Hydrostatic Pressure and Biaxial Strains on the Elastic, Electronic and Lattice Vibrational Properties of Trigonal Boron Nitride
[40] | Tian Y, Kou C, Lu M, Yan Y, Zhang D, Li W, Cui X, Zhang S, Zhang M and Gao L 2020 Phys. Lett. A 384 126518 | Superhard monoclinic BN allotrope in M-carbon structure
[41] | He C, Sun L, Zhang C, Peng X, Zhang K and Zhong J 2012 Phys. Chem. Chem. Phys. 14 10967 | Z-BN: a novel superhard boron nitride phase
[42] | Fan Q, Wei Q, Yan H, Zhang M, Zhang Z, Zhang J and Zhang D 2014 Comput. Mater. Sci. 85 80 | Elastic and electronic properties of Pbca-BN: First-principles calculations
[43] | Li Z and Gao F 2012 Phys. Chem. Chem. Phys. 14 869 | Structure, bonding, vibration and ideal strength of primitive-centered tetragonal boron nitride
[44] | Hubert H, Garvie L A J, Buseck P R, Petuskey W T and Mcmillan P F 1997 J. Solid State Chem. 133 356 10.1006/jssc.1997.7582 |
[45] | Solozhenko V L, Le G Y and Kurakevych O O 2006 C. R. Chim. 9 1472 | Solid-state synthesis of boron subnitride, B6N: myth or reality?
[46] | Li Y, Hao J, Liu H, Lu S and Tse J S 2015 Phys. Rev. Lett. 115 105502 | High-Energy Density and Superhard Nitrogen-Rich B-N Compounds
[47] | Xie C, Ma M, Liu C, Pan Y, Xiong M, He J, Gao G, Yu D, Xu B, Tian Y and Zhao Z 2017 J. Mater. Chem. C 5 5897 | Superhard three-dimensional B 3 N 4 with two-dimensional metallicity
[48] | Lin S, Xu M, Hao J, Wang X, Wu M, Shi J, Cui W, Liu D, Lei W and Li Y 2019 J. Mater. Chem. C 7 4527 | Prediction of superhard B 2 N 3 with two-dimensional metallicity
[49] | Solozhenko V L and Kurakevych O O 2008 J. Phys.: Conf. Ser. 121 62001 | New boron subnitride B 13 N 2 : HP-HT synthesis, structure and equation of state
[50] | Zhang H, Yao S and Widom M 2016 Phys. Rev. B 93 144107 | Predicted phase diagram of boron-carbon-nitrogen
[51] | Ektarawong A, Simak S I and Alling B 2017 Phys. Rev. B 95 064206 | Thermodynamic stability and properties of boron subnitrides from first principles
[52] | Kurakevych O O and Solozhenko V L 2007 Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 63 i80 | Rhombohedral boron subnitride, B 13 N 2 , by X-ray powder diffraction
[53] | Solozhenko V L and Turkevich V Z 2018 J. Phys. Chem. C 122 8505 | Phase Diagram of the B–BN System at Pressures up to 24 GPa: Experimental Study and Thermodynamic Analysis
[54] | Steele B A and Oleynik I I 2016 Chem. Phys. Lett. 643 21 | Sodium pentazolate: A nitrogen rich high energy density material
[55] | Shi X H, Liu B, Yao Z and Liu B B 2020 Chin. Phys. Lett. 37 047101 | Pressure-Stabilized New Phase of CaN 4
[56] | Gao B, Gao P, Lu S, Lv J, Wang Y and Ma Y 2019 Sci. Bull. 64 301 | Interface structure prediction via CALYPSO method
[57] | Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116 | Crystal structure prediction via particle-swarm optimization
[58] | Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063 | CALYPSO: A method for crystal structure prediction
[59] | Cui W and Li Y 2019 Chin. Phys. B 28 107104 | The role of CALYPSO in the discovery of high- T c hydrogen-rich superconductors
[60] | Li L, Cui X, Cao H, Jiang Y, Duan H, Jing Q, Liu J and Wang Q 2020 Chin. Phys. B 29 077101 | Structural evolution and magnetic properties of ScLi n ( n = 2–13) clusters: A PSO and DFT investigation
[61] | Sun Y, Xu B and Yi L 2020 Chin. Phys. B 29 023102 | HfN 2 monolayer: A new direct-gap semiconductor with high and anisotropic carrier mobility
[62] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | Generalized Gradient Approximation Made Simple
[63] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
[64] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 | From ultrasoft pseudopotentials to the projector augmented-wave method
[65] | Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106 | First-principles calculations of the ferroelastic transition between rutile-type and -type at high pressures
[66] | Parlinski K, Li Z Q and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063 | First-Principles Determination of the Soft Mode in Cubic
[67] | Hill R 1952 Proc. Phys. Soc. A 65 349 | The Elastic Behaviour of a Crystalline Aggregate
[68] | Roundy D, Krenn C R, Cohen M L and Morris J W 1999 Phys. Rev. Lett. 82 2713 | Ideal Shear Strengths of fcc Aluminum and Copper
[69] | Tang X, Hao J and Li Y 2015 Phys. Chem. Chem. Phys. 17 27821 | A first-principles study of orthorhombic CN as a potential superhard material
[70] | Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207 | Hybrid functionals based on a screened Coulomb potential
[71] | Paine R T and Narula C K 1990 Chem. Rev. 90 73 | Synthetic routes to boron nitride
[72] | Gall D, Shin C S, Spila T, Odén M, Senna M J H, Greene J E and Petrov I 2002 J. Appl. Phys. 91 3589 | Growth of single-crystal CrN on MgO(001): Effects of low-energy ion-irradiation on surface morphological evolution and physical properties
[73] | Wu Z, Zhao E, Xiang H, Hao X, Liu X and Meng J 2007 Phys. Rev. B 76 054115 | Crystal structures and elastic properties of superhard and from first principles
[74] | Guo X, Li L, Liu Z, Yu D, He J, Liu R, Xu B, Tian Y and Wang H T 2008 J. Appl. Phys. 104 23503 | Hardness of covalent compounds: Roles of metallic component and d valence electrons