Large-Area Freestanding Weyl Semimetal WTe2 Membranes

Funds: Supported by the National Key R&D Program of China (Grant No. 2017YFA0206304), the National Natural Science Foundation of China (Grant Nos. 11874203, 61822403, U1732159, 11774160, and 61427812), and the Fundamental Research Funds for the Central Universities (Grant No. 021014380080).
  • Received Date: November 01, 2020
  • Published Date: December 31, 2020
  • We report a universal transfer methodology for producing artificial heterostructures of large-area freestanding single-crystalline WTe2 membranes on diverse target substrates. The transferred WTe2 membranes exhibit a nondestructive structure with a carrier mobility comparable to that of as-grown films (179–1055 cm2V1s1). Furthermore, the transferred membranes show distinct Shubnikov–de Haas quantum oscillations as well as weak localization/weak anti-localization. These results provide a new approach to the development of atom manufacturing and devices based on atomic-level, large-area topological quantum films.
  • Article Text

  • [1]
    Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495 doi: 10.1038/nature15768

    CrossRef Google Scholar

    [2]
    Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P and Cava R J 2014 Nature 514 205 doi: 10.1038/nature13763

    CrossRef Google Scholar

    [3]
    Jiang J, Tang F, Pan X C, Liu H M, Niu X H, Wang Y X, Xu D F, Yang H F, Xie B P, Song F Q, Dudin P, Kim T K, Hoesch M, Das P K, Vobornik I, Wan X G and Feng D L 2015 Phys. Rev. Lett. 115 166601 doi: 10.1103/PhysRevLett.115.166601

    CrossRef Google Scholar

    [4]
    Kang D, Zhou Y, Yi W, Yang C, Guo J, Shi Y, Zhang S, Wang Z, Zhang C, Jiang S, Li A, Yang K, Wu Q, Zhang G, Sun L and Zhao Z 2015 Nat. Commun. 6 7804 doi: 10.1038/ncomms8804

    CrossRef Google Scholar

    [5]
    Pan X C, Chen X, Liu H, Feng Y, Wei Z, Zhou Y, Chi Z, Pi L, Yen F, Song F, Wan X, Yang Z, Wang B, Wang G and Zhang Y 2015 Nat. Commun. 6 7805 doi: 10.1038/ncomms8805

    CrossRef Google Scholar

    [6]
    Tang S J, Zhang C F, Wong D, Pedramrazi Z, Tsai H, Jia C J, Moritz B, Claassen M, Ryu H, Kahn S, Jiang J, Yan H, Hashimoto M, Lu D H, Moore R G, Hwang C, Hwang C, Hussain Z, Chen Y L, Ugeda M M, Liu Z, Xie X M, Devereaux T P, Crommie M F, Mo S and Shen Z X 2017 Nat. Phys. 13 683 doi: 10.1038/nphys4174

    CrossRef Google Scholar

    [7]
    Wu S F, Fatemi V, Gibson Q D, Watanabe K J, Taniguchi T, Cava R J and Jarillo-Herrero P 2018 Science 359 76 doi: 10.1126/science.aan6003

    CrossRef Google Scholar

    [8]
    Fei Z, Zhao W, Palomaki T A, Sun B, Miller M K, Zhao Z, Yan J, Xu X and Cobden D H 2018 Nature 560 336 doi: 10.1038/s41586-018-0336-3

    CrossRef Google Scholar

    [9]
    Ma Q, Xu S Y, Shen H, MacNeill D, Fatemi V, Chang T R, Mier V A M, Wu S, Du Z, Hsu C H, Fang S, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Kaxiras E, Lu H Z, Lin H, Fu L, Gedik N and Jarillo-Herrero P 2019 Nature 565 337 doi: 10.1038/s41586-018-0807-6

    CrossRef Google Scholar

    [10]
    Kang K, Li T, Sohn E, Shan J and Mak K F 2019 Nat. Mater. 18 324 doi: 10.1038/s41563-019-0294-7

    CrossRef Google Scholar

    [11]
    Song S, Sim Y, Kim S Y, Kim J H, Oh I, Na W, Lee D H, Wang J, Yan S, Liu Y, Kwak J, Chen J H, Cheong H, Yoo J W, Lee Z and Kwon S Y 2020 Nat. Electron. 3 207 doi: 10.1038/s41928-020-0396-x

    CrossRef Google Scholar

    [12]
    Wang A Q, Ye X G, Yu D P and Liao Z M 2020 ACS Nano 14 3755 doi: 10.1021/acsnano.9b07990

    CrossRef Google Scholar

    [13]
    Wang L M, Zou X M, Lin J, Jiang J Y, Liu Y, Liu X Q, Zhao X, Liu Y F, Ho J C and Liao L 2019 ACS Nano 13 4804 doi: 10.1021/acsnano.9b01713

    CrossRef Google Scholar

    [14]
    Guo Q X, Wu Y, Xu L X, Gong Y, Ou Y B, Liu Y, Li L L, Yan Y, Han G, Wang D W, Wang L H, Long S B, Zhang B W, Cao X, Yang S W, Wang X M, Huang Y Z, Liu T, Yu G H, He K and Teng J 2020 Chin. Phys. Lett. 37 057301 doi: 10.1088/0256-307X/37/5/057301

    CrossRef Google Scholar

    [15]
    Gong Y, Guo J W, Li J H, Zhu K J, Liao M H, Liu X Z, Zhang Q H, Gu L, Tang L, Feng X, Zhang D, Li W, Song C L, Wang L L, Yu P, Chen X, Wang Y Y, Yao H, Duan W H, Xu Y, Zhang S C, Ma X C, Xue Q K and He K 2019 Chin. Phys. Lett. 36 076801 doi: 10.1088/0256-307X/36/7/076801

    CrossRef Google Scholar

    [16]
    Yuan X, Cheng P H, Zhang L Q, Zhang C, Wang J Y, Liu Y W, Sun Q Q, Zhou P, Zhang D W, Hu Z G, Wan X G, Yan H G, Li Z Q and Xiu F X 2017 Nano Lett. 17 2211 doi: 10.1021/acs.nanolett.6b04778

    CrossRef Google Scholar

    [17]
    Zhang M H, Wang X F, Song F Q and Zhang R 2018 Chin. Phys. B 27 097307 doi: 10.1088/1674-1056/27/9/097307

    CrossRef Google Scholar

    [18]
    Zhang E, Chen R, Huang C, Yu J, Zhang K, Wang W, Liu S, Ling J, Wan X, Lu H Z and Xiu F X 2017 Nano Lett. 17 878 doi: 10.1021/acs.nanolett.6b04194

    CrossRef Google Scholar

    [19]
    Zhou J, Liu F, Lin J, Huang X, Xia J, Zhang B, Zeng Q, Wang H, Zhu C, Niu L, Wang X, Fu W, Yu P, Chang T R, Hsu C H, Wu D, Jeng H T, Huang Y, Lin H, Shen Z, Yang C, Lu L, Suenaga K, Zhou W, Pantelides S T, Liu G and Liu Z 2017 Adv. Mater. 29 1603471 doi: 10.1002/adma.201603471

    CrossRef Google Scholar

    [20]
    Fan S D, Vu Q A, Tran M D, Adhikari S and Lee Y H 2020 2D Mater. 7 022005 doi: 10.1088/2053-1583/ab7629

    CrossRef Google Scholar

    [21]
    Hong S S, Gu M Q, Verma M, Harbola V, Wang B Y, Lu D, Vailionis A, Hikita Y, Pentcheva R, Rondinelli J M and Hwang H Y 2020 Science 368 71 doi: 10.1126/science.aax9753

    CrossRef Google Scholar

    [22]
    Kum H S, Lee H, Kim S, Lindemann S, Kong W, Qiao K, Chen P, Irwin J, Lee J H, Xie S, Subramanian S, Shim J, Bae S H, Choi C, Ranno L, Seo S, Lee S, Bauer J, Li H, Lee K, Robinson J A, Ross C A, Schlom D G, Rzchowski M S, Eom C B and Kim J 2020 Nature 578 75 doi: 10.1038/s41586-020-1939-z

    CrossRef Google Scholar

    [23]
    Yun S J, Chae S H, Kim H, C P J, Park J H, Han G H, Lee J S, Kim S M, M O H, Seok J, Jeong M S, Kim K K and Lee Y H 2015 ACS Nano 9 5510 doi: 10.1021/acsnano.5b01529

    CrossRef Google Scholar

    [24]
    Gao Y, Liu Z, Sun D M, Huang L, Ma L P, Yin L C, Ma T, Zhang Z, Ma X L, Peng L M, Cheng H M and Ren W 2015 Nat. Commun. 6 8569 doi: 10.1038/ncomms9569

    CrossRef Google Scholar

    [25]
    Gao M, Zhang M H, Niu W, Chen Y Q, Gu M, Wang H Y, Song F Q, Wang P, Yan S C, Wang F Q, Wang X R, Wang X F, Xu Y B and Zhang R 2017 Appl. Phys. Lett. 111 031906 doi: 10.1063/1.4995227

    CrossRef Google Scholar

    [26]
    Chen Y Q, Chen Y D, Ning J A, Chen L M, Zhuang W Z, He L, Zhang R, Xu Y B and Wang X F 2020 Chin. Phys. Lett. 37 017104 doi: 10.1088/0256-307X/37/1/017104

    CrossRef Google Scholar

    [27]
    Tu N H, Tanabe Y, Satake Y, Huynh K K, Le P H, Matsushita S Y and Tanigaki K 2017 Nano Lett. 17 2354 doi: 10.1021/acs.nanolett.6b05260

    CrossRef Google Scholar

    [28]
    Kong W D, F W S, Richard P, Lian C S, T W J, Yang C L, Shi Y G and Ding H 2015 Appl. Phys. Lett. 106 081906 doi: 10.1063/1.4913680

    CrossRef Google Scholar

    [29]
    Cai P L, Hu J, He L P, Pan J, Hong X C, Zhang Z, Zhang J, Wei J, Mao Z Q and Li S Y 2015 Phys. Rev. Lett. 115 057202 doi: 10.1103/PhysRevLett.115.057202

    CrossRef Google Scholar

    [30]
    Niu W, Gao M, Wang X F, Song F Q, Du J, Wang X R, Xu Y B and Zhang R 2016 Sci. Rep. 6 26081 doi: 10.1038/s41598-016-0012-5

    CrossRef Google Scholar

    [31]
    Liao Z L, Li F M, Gao P, Li L, Guo J D, Pan X Q, Jin R, Plummer E W and Zhang J D 2015 Phys. Rev. B 92 125123 doi: 10.1103/PhysRevB.92.125123

    CrossRef Google Scholar

    [32]
    Ziese M 2003 Phys. Rev. B 68 132411 doi: 10.1103/PhysRevB.68.132411

    CrossRef Google Scholar

    [33]
    Xu Y, Zhang J C, Cao G X, Jing C and Cao S X 2006 Phys. Rev. B 73 224410 doi: 10.1103/PhysRevB.73.224410

    CrossRef Google Scholar

    [34]
    Knap W, Skierbiszewski C, Zduniak A, Litwin-Staszewska E and Bertho D 1996 Phys. Rev. B 53 3912 doi: 10.1103/PhysRevB.53.3912

    CrossRef Google Scholar

    [35]
    Zhang K, Pan H Y, Wei Z X, Zhang M H, Song F Q, Wang X F and Zhang R 2017 Chin. Phys. B 26 096101 doi: 10.1088/1674-1056/26/9/096101

    CrossRef Google Scholar

    [36]
    Zhang M H, Li Y, Song F Q, Wang X F and Zhang R 2017 Chin. Phys. B 26 127305 doi: 10.1088/1674-1056/26/12/127305

    CrossRef Google Scholar

    [37]
    Fatemi V, Gibson Q D, Watanabe K J, Taniguchi T, Cava R J and Jarillo-Herrero P 2017 Phys. Rev. B 95 041410 doi: 10.1103/PhysRevB.95.041410

    CrossRef Google Scholar

  • Related Articles

    [1]Chandaneswar Midya. Exact Solutions of Chemically Reactive Solute Distribution in MHD Boundary Layer Flow over a Shrinking Surface [J]. Chin. Phys. Lett., 2012, 29(1): 014701. doi: 10.1088/0256-307X/29/1/014701
    [2]Krishnendu Bhattacharyya, Swati Mukhopadhyay, G. C. Layek. Slip Effects on an Unsteady Boundary Layer Stagnation-Point Flow and Heat Transfer towards a Stretching Sheet [J]. Chin. Phys. Lett., 2011, 28(9): 094702. doi: 10.1088/0256-307X/28/9/094702
    [3]Krishnendu Bhattacharyya, G. C. Layek. MHD Boundary Layer Flow of Dilatant Fluid in a Divergent Channel with Suction or Blowing [J]. Chin. Phys. Lett., 2011, 28(8): 084705. doi: 10.1088/0256-307X/28/8/084705
    [4]Krishnendu Bhattacharyya. Boundary Layer Flow and Heat Transfer over an Exponentially Shrinking Sheet [J]. Chin. Phys. Lett., 2011, 28(7): 074701. doi: 10.1088/0256-307X/28/7/074701
    [5]Krishnendu Bhattacharyya, Swati Mukhopadhyay, G. C. Layek. MHD Boundary Layer Slip Flow and Heat Transfer over a Flat Plate [J]. Chin. Phys. Lett., 2011, 28(2): 024701. doi: 10.1088/0256-307X/28/2/024701
    [6]LI Jing, LIU Zhao-Hui, WANG Han-Feng, CHEN Sheng, LIU Ya-Ming, HAN Hai-Feng, ZHENG Chu-Guang. Turbulence Modulations in the Boundary Layer of a Horizontal Particle-Laden Channel Flow [J]. Chin. Phys. Lett., 2010, 27(6): 064701. doi: 10.1088/0256-307X/27/6/064701
    [7]LI Xin-Liang, FU De-Xun, MA Yan-Wen, GAO Hui. Acoustic Calculation for Supersonic Turbulent Boundary Layer Flow [J]. Chin. Phys. Lett., 2009, 26(9): 094701. doi: 10.1088/0256-307X/26/9/094701
    [8]Anuar Ishak. Radiation Effects on the Flow and Heat Transfer over a Moving Plate in a Parallel Stream [J]. Chin. Phys. Lett., 2009, 26(3): 034701. doi: 10.1088/0256-307X/26/3/034701
    [9]Anuar Ishak, Roslinda Nazar, Ioan Pop. Boundary Layer on a Moving Wall with Suction and Injection [J]. Chin. Phys. Lett., 2007, 24(8): 2274-2276.
    [10]CHEN Xue-Hui, ZHENG Lian-Cun, ZHANG Xin-Xin. MHD Boundary Layer Flow of a Non-Newtonian Fluid on a Moving Surface with a Power-Law Velocity [J]. Chin. Phys. Lett., 2007, 24(7): 1989-1991.

Catalog

    Article views (375) PDF downloads (296) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return