[1] | Chen D Z, Jang D, Guan K M, An Q, Goddard W A and Greer J R 2013 Nano Lett. 13 4462 | Nanometallic Glasses: Size Reduction Brings Ductility, Surface State Drives Its Extent
[2] | Jang D and Greer J R 2010 Nat. Mater. 9 215 | Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses
[3] | Volkert C A, Donohue A and Spaepen F 2008 J. Appl. Phys. 103 083539 | Effect of sample size on deformation in amorphous metals
[4] | Lee S W, Jafary-Zadeh M, Chen D Z, Zhang Y W and Greer J R 2015 Nano Lett. 15 5673 | Size Effect Suppresses Brittle Failure in Hollow Cu 60 Zr 40 Metallic Glass Nanolattices Deformed at Cryogenic Temperatures
[5] | Brower W E, Matyjaszczyk M S, Pettit T L and Smith G V 1983 Nature 301 497 | Metallic glasses as novel catalysts
[6] | Pauly S, Löber L, Petters R, Stoica M, Scudino S, Kühn U and Eckert J 2013 Mater. Today 16 37 | Processing metallic glasses by selective laser melting
[7] | Shen Y, Li Y, Chen C and Tsai H J M 2017 Mater. & Des. 117 213 | 3D printing of large, complex metallic glass structures
[8] | Zberg B, Uggowitzer P J and Löffler J F 2009 Nat. Mater. 8 887 | MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants
[9] | Wang W H, Dong C and Shek C H 2004 Mater. Sci. Eng. R 44 45 | Bulk metallic glasses
[10] | Van Der Scheer P, Van De Laar T, Van Der Gucht J, Vlassopoulos D and Sprakel J 2017 ACS Nano 11 6755 | Fragility and Strength in Nanoparticle Glasses
[11] | Li Q J, Xu B, Hara S, Li J and Ma E 2018 Acta Mater. 145 19 | Sample-size-dependent surface dislocation nucleation in nanoscale crystals
[12] | Inoue A and Nishiyama N 2007 MRS Bull. 32 651 | New Bulk Metallic Glasses for Applications as Magnetic-Sensing, Chemical, and Structural Materials
[13] | Schroers J, Kumar G, Hodges T, Chan S and Kyriakides T 2009 JOM 61 21 | Bulk metallic glasses for biomedical applications
[14] | Dong J, Feng Y H, Huan Y, Yi J, Wang W H, Bai H Y and Sun B A 2020 Chin. Phys. Lett. 37 017103 | Rejuvenation in Hot-Drawn Micrometer Metallic Glassy Wires
[15] | Jang D, Gross C T and Greer J R 2011 Int. J. Plast. 27 858 | Effects of size on the strength and deformation mechanism in Zr-based metallic glasses
[16] | Şopu D, Foroughi A, Stoica M and Eckert J 2016 Nano Lett. 16 4467 | Brittle-to-Ductile Transition in Metallic Glass Nanowires
[17] | Stevenson J D and Wolynes P G 2008 J. Chem. Phys. 129 234514 | On the surface of glasses
[18] | Kumar G, Desai A and Schroers J 2011 Adv. Mater. 23 461 | Bulk Metallic Glass: The Smaller the Better
[19] | Chen N, Frank R, Asao N, Louzguine-Luzgin D V, Sharma P, Wang J Q, Xie G Q, Ishikawa Y, Hatakeyama N, Lin Y C, Esashi M, Yamamoto Y and Inoue A 2011 Acta Mater. 59 6433 | Formation and properties of Au-based nanograined metallic glasses
[20] | Witte R, Feng T, Fang J X, Fischer A, Ghafari M, Kruk R, Brand R A, Wang D, Hahn H and Gleiter H 2013 Appl. Phys. Lett. 103 073106 | Evidence for enhanced ferromagnetism in an iron-based nanoglass
[21] | Ketov S V, Shi X, Xie G, Kumashiro R, Churyumov A Y, Bazlov A I, Chen N, Ishikawa Y, Asao N, Wu H and Louzguine-Luzgin D V 2015 Sci. Rep. 5 7799 | Nanostructured Zr-Pd Metallic Glass Thin Film for Biochemical Applications
[22] | Zhao M, Abe K, Yamaura S I, Yamamoto Y and Asao N 2014 Chem. Mater. 26 1056 | Fabrication of Pd–Ni–P Metallic Glass Nanoparticles and Their Application as Highly Durable Catalysts in Methanol Electro-oxidation
[23] | Chen N, Wang D, Guan P F, Bai H Y, Wang W H, Zhang Z J, Hahn H and Gleiter H 2019 Appl. Phys. Lett. 114 043103 | Direct observation of fast surface dynamics in sub-10-nm nanoglass particles
[24] | Cao C R, Huang K Q, Shi J A, Zheng D N, Wang W H, Gu L and Bai H Y 2019 Nat. Commun. 10 1966 | Liquid-like behaviours of metallic glassy nanoparticles at room temperature
[25] | An S, Su R, Zhao S, Liu J, Liu B and Guan P 2018 Phys. Rev. B 98 134101 | Ultrasmall nanoparticles inducing order-to-disorder transition
[26] | Tian Y, Jiao W, Liu P, Song S, Lu Z, Hirata A and Chen M 2019 Nat. Commun. 10 5249 | Fast coalescence of metallic glass nanoparticles
[27] | Li Y Z, Sun Y T, Lu Z, Li M Z, Bai H Y and Wang W H 2017 J. Chem. Phys. 146 224502 | Size effect on dynamics and glass transition in metallic liquids and glasses
[28] | Zhang P, Maldonis J J, Liu Z, Schroers J and Voyles P M 2018 Nat. Commun. 9 1129 | Spatially heterogeneous dynamics in a metallic glass forming liquid imaged by electron correlation microscopy
[29] | Qi W and Bowles R K 2016 ACS Nano 10 3416 | Vapor Condensed and Supercooled Glassy Nanoclusters
[30] | Sun D, Shang C, Liu Z and Gong X 2017 Chin. Phys. Lett. 34 026402 | Intrinsic Features of an Ideal Glass
[31] | Sun D Y and Gong X G 2020 New J. Phys. 22 103020 | Nanocluster glass-formation: a potential energy landscape perspective
[32] | Chen L, Cao C R, Shi J A, Lu Z, Sun Y T, Luo P, Gu L, Bai H Y, Pan M X and Wang W H 2017 Phys. Rev. Lett. 118 016101 | Fast Surface Dynamics of Metallic Glass Enable Superlatticelike Nanostructure Growth
[33] | Sun G, Saw S, Douglass I and Harrowell P 2017 Phys. Rev. Lett. 119 245501 | Structural Origin of Enhanced Dynamics at the Surface of a Glassy Alloy
[34] | Bi Q L, Lü Y J and Wang W H 2018 Phys. Rev. Lett. 120 155501 | Multiscale Relaxation Dynamics in Ultrathin Metallic Glass-Forming Films
[35] | Mousseau N, Béland L K, Brommer P, Joly J F, El-Mellouhi F, Machado-Charry E, Marinica M C and Pochet P 2012 J. At. Mol. Opt. Phys. 2012 925278 | The Activation-Relaxation Technique: ART Nouveau and Kinetic ART
[36] | Plimpton S 1995 J. Comput. Phys. 117 1 | Fast Parallel Algorithms for Short-Range Molecular Dynamics
[37] | Cheng Y Q, Ma E and Sheng H W 2009 Phys. Rev. Lett. 102 245501 | Atomic Level Structure in Multicomponent Bulk Metallic Glass
[38] | Mendelev M I, Sordelet D J and Kramer M J 2007 J. Appl. Phys. 102 043501 | Using atomistic computer simulations to analyze x-ray diffraction data from metallic glasses
[39] | Kob W and Andersen H C 1995 Phys. Rev. E 52 4134 | Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture. II. Intermediate scattering function and dynamic susceptibility
[40] | Rault J 2000 J. Non-Cryst. Solids 271 177 | Origin of the Vogel–Fulcher–Tammann law in glass-forming materials: the α–β bifurcation
[41] | Angell C A 1995 Science 267 1924 | Formation of Glasses from Liquids and Biopolymers
[42] | Angell C A 1988 J. Phys. Chem. Solids 49 863 | Perspective on the glass transition
[43] | Debenedetti P G and Stillinger F H 2001 Nature 410 259 | Supercooled liquids and the glass transition
[44] | Wang Y J, Du J P, Shinzato S, Dai L H and Ogata S 2018 Acta Mater. 157 165 | A free energy landscape perspective on the nature of collective diffusion in amorphous solids
[45] | Wang B, Wang L J, Shang B S, Gao X Q, Yang Y, Bai H Y, Pan M X, Wang W H and Guan P F 2020 Acta Mater. 195 611 | Revealing the ultra-low-temperature relaxation peak in a model metallic glass