[1] | Yan L W, Hong C Q, Sun B Q, Zhao G D, Cheng Y H, Dong S, Zhang D Y and Zhang X H 2017 ACS Appl. Mater. & Interfaces 9 6320 | In Situ Growth of Core–Sheath Heterostructural SiC Nanowire Arrays on Carbon Fibers and Enhanced Electromagnetic Wave Absorption Performance
[2] | Liu P B, Zhang Y Q, Yan J, Huang Y, Xia L and Guang Z X 2019 Chem. Eng. J. 368 285 | Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption
[3] | Wang D T, Wang X C, Zhang X, Yuan H R and Chen Y J 2020 Chin. Phys. Lett. 37 045201 | Tunable Dielectric Properties of Carbon Nanotube@Polypyrrole Core-Shell Hybrids by the Shell Thickness for Electromagnetic Wave Absorption *
[4] | Jian X, Wu B, Wei Y F, Dou S X, Wang X L, He W D and Mahmood N 2016 ACS Appl. Mater. & Interfaces 8 6101 | Facile Synthesis of Fe 3 O 4 /GCs Composites and Their Enhanced Microwave Absorption Properties
[5] | Yang M L, Yuan Y, Li Y, Sun X X, Wang S S, Liang L, Ning Y H, Li J J, Yin W L, Che R C and Li Y B 2020 Carbon 161 517 | Dramatically enhanced electromagnetic wave absorption of hierarchical CNT/Co/C fiber derived from cotton and metal-organic-framework
[6] | Andrey S, Andreev Mariya A, Kazakova A V, Ishchenko A G, Selyutin O B, Lapina V L and de Lacaillerie K J B D 2017 Carbon 114 39 | Magnetic and dielectric properties of carbon nanotubes with embedded cobalt nanoparticles
[7] | Lin H Y, Zhu H, Guo H F and Yu L F 2007 Mater. Lett. 61 3547 | Investigation of the microwave-absorbing properties of Fe-filled carbon nanotubes
[8] | Qing Y C, Zhou W C, Luo F and Zhu D M 2010 Carbon 48 4074 | Epoxy-silicone filled with multi-walled carbon nanotubes and carbonyl iron particles as a microwave absorber
[9] | Li N, Huang G W, Li Y Q, Xiao H M, Feng Q P, Hu N and Fu S Y 2017 ACS Appl. Mater. & Interfaces 9 2973 | Enhanced Microwave Absorption Performance of Coated Carbon Nanotubes by Optimizing the Fe 3 O 4 Nanocoating Structure
[10] | Shen C and Zhao D 2001 New Carbon Mater. 16 1 |
[11] | Liu L L, Zhang S, Yan F, Li C Y, Zhu C L, Zhang X T and Chen Y J 2018 ACS Appl. Mater. & Interfaces 10 14108 | Three-Dimensional Hierarchical MoS 2 Nanosheets/Ultralong N-Doped Carbon Nanotubes as High-Performance Electromagnetic Wave Absorbing Material
[12] | Xu J, Shi Y N, Zhang X C, Yuan H R, Li B, Zhu C L, Zhang X T and Chen Y J 2020 J. Mater. Chem. C 8 7847 | General strategy for fabrication of N-doped carbon nanotube/reduced graphene oxide aerogels for dissipation and conversion of electromagnetic energy
[13] | Zhang X C, Xu J, Yuan H R, Zhang S, Ouyang Q Y, Zhu C L, Zhang X T and Chen Y J 2019 ACS Appl. Mater. & Interfaces 11 39100 | Large-Scale Synthesis of Three-Dimensional Reduced Graphene Oxide/Nitrogen-Doped Carbon Nanotube Heteronanostructures as Highly Efficient Electromagnetic Wave Absorbing Materials
[14] | Li K Y, Sun H, Yuan H R, Zhang S, Zhang X, Zhu C L, Zhang X T and Chen Y J 2020 J. Alloys Compd. 821 153267 | Three-dimensional architectures assembled with branched metal nanoparticle-encapsulated nitrogen-doped carbon nanotube arrays for absorption of electromagnetic wave
[15] | Ning M Q, Li J B, Kuang B Y, Wang C Z, Su D Z, Zhao Y J, Jin H B and Cao M S 2018 Appl. Surf. Sci. 447 244 | One-step fabrication of N-doped CNTs encapsulating M nanoparticles (M = Fe, Co, Ni) for efficient microwave absorption
[16] | Zhang X C, Zhang X, Yuan H R, Li K Y, Ouyang Q Y, Zhu C L, Zhang S and Chen Y J 2020 Chem. Eng. J. 383 123208 | CoNi nanoparticles encapsulated by nitrogen-doped carbon nanotube arrays on reduced graphene oxide sheets for electromagnetic wave absorption
[17] | Ma X Z, Li K Y, Zhang X, Wei B, Yang H, Liu L N, Zhang M Y, Zhang X T and Chen Y J 2019 J. Mater. Chem. A 7 14904 | The surface engineering of cobalt carbide spheres through N, B co-doping achieved by room-temperature in situ anchoring effects for active and durable multifunctional electrocatalysts
[18] | Guo Y Y, Yuan P F, Zhang J N, Hu Y F, Amiinu I S, Wang X, Zhou J G, Xia H C, Song Z B, Xu Q and Mu S C 2018 ACS Nano 12 1894 | Carbon Nanosheets Containing Discrete Co-N x -B y -C Active Sites for Efficient Oxygen Electrocatalysis and Rechargeable Zn–Air Batteries
[19] | Stephan O, Ajayan P M, Colliex C, Ph R, Lambert J M, Bernier P and Lefin P 1994 Science 266 1683 | Doping Graphitic and Carbon Nanotube Structures with Boron and Nitrogen
[20] | Feng J, Pu F Z, Li Z X, Li X H, Hu X Y and Bai J T 2016 Carbon 104 214 | Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber
[21] | Quan B, Liang X H, Ji G B, Cheng Y, Liu W, Ma J N, Zhang Y N, Li D R and Xu G Y 2017 J. Alloys Compd. 728 1065 | Dielectric polarization in electromagnetic wave absorption: Review and perspective
[22] | Panchakarla L S, Govindaraj A and Rao C N R 2010 Inorg. Chim. Acta 363 4163 | Boron- and nitrogen-doped carbon nanotubes and graphene
[23] | Zhang X C, Yan F, Zhang S, Yuan H R, Zhu C L, Zhang X and Chen Y J 2018 ACS Appl. Mater. & Interfaces 10 24920 | Hollow N-Doped Carbon Polyhedron Containing CoNi Alloy Nanoparticles Embedded within Few-Layer N-Doped Graphene as High-Performance Electromagnetic Wave Absorbing Material
[24] | Nguyen T T H, Le V K, Minh C L and Nguyen N H 2017 Comput. Theor. Chem. 1100 46 | A theoretical study of carbon dioxide adsorption and activation on metal-doped (Fe, Co, Ni) carbon nanotube
[25] | Yan F, Zhang S, Zhang X, Li C Y, Zhu C L, Zhang X T and Chen Y J 2018 J. Mater. Chem. C 6 12781 | Growth of CoFe 2 O 4 hollow nanoparticles on graphene sheets for high-performance electromagnetic wave absorbers
[26] | Li Y J, Huang B L, Sun Y J, Luo M C, Yang Y, Qin Y N, Wang L, Li C J, Lv F, Zhang W Y and Guo S J 2019 Small 15 1804212 | Multimetal Borides Nanochains as Efficient Electrocatalysts for Overall Water Splitting
[27] | Chen B H, He X B, Yin F X, Wang H, Liu D J, Shi R X, Chen J N and Yin H W 2017 Adv. Funct. Mater. 27 1700795 | MO-Co@N-Doped Carbon (M = Zn or Co): Vital Roles of Inactive Zn and Highly Efficient Activity toward Oxygen Reduction/Evolution Reactions for Rechargeable Zn-Air Battery
[28] | Yang L J, Jiang S J, Zhao Y, Zhu L, Chen S, Wang X Z, Wu Q, Ma J, Ma Y W and Hu Z 2011 Angew. Chem. Int. Ed. 50 7132 | Boron-Doped Carbon Nanotubes as Metal-Free Electrocatalysts for the Oxygen Reduction Reaction
[29] | Ozaki J, Kimura N, Anahara T and Oya A 2007 Carbon 45 1847 | Preparation and oxygen reduction activity of BN-doped carbons
[30] | Feng J, Zong Y, Sun Y, Zhang Y, Yang X, Long G K, Wang Y, Li X H and Zheng X L 2018 Chem. Eng. J. 345 441 | Optimization of porous FeNi3/N-GN composites with superior microwave absorption performance
[31] | Wu Z C, Pei K, Xing L S, Yu X F, You W B and Che R C 2019 Adv. Funct. Mater. 29 1901448 | Enhanced Microwave Absorption Performance from Magnetic Coupling of Magnetic Nanoparticles Suspended within Hierarchically Tubular Composite
[32] | Yuan H R, Li B, Zhu C L, Xie Y, Jiang Y J and Chen Y J 2020 Appl. Phys. Lett. 116 153101 | Dielectric behavior of single iron atoms dispersed on nitrogen-doped nanocarbon
[33] | Liu J W, Che R C, Chen H J, Zhang F, Xia F, Wu Q S and Wang M 2012 Small 8 1214 | Microwave Absorption Enhancement of Multifunctional Composite Microspheres with Spinel Fe3O4 Cores and Anatase TiO2 Shells
[34] | Liu Q H, Cao Q, Bi H, Liang C Y, Yuan K P, She W, Yang Y J and Che R C 2016 Adv. Mater. 28 486 | CoNi@SiO 2 @TiO 2 and CoNi@Air@TiO 2 Microspheres with Strong Wideband Microwave Absorption
[35] | Wen B, Cao M S, Lu M M, Cao W Q, Shi H L, Liu J, Wang X X, Jin H B, Fang X Y, Wang W Z and Yuan J 2014 Adv. Mater. 26 3484 | Reduced Graphene Oxides: Light-Weight and High-Efficiency Electromagnetic Interference Shielding at Elevated Temperatures
[36] | Aharoni A 1991 J. Appl. Phys. 69 7762 | Exchange resonance modes in a ferromagnetic sphere
[37] | Wilts C H, Lai S K C 1972 IEEE Trans. Magn. 8 280 | Spin wave measurements of exchange constant in Ni-Fe alloy films
[38] | Li X H, Feng J, Du Y P, Bai J T, Fan H M, Zhang H L, Peng Y and Li F S 2015 J. Mater. Chem. A 3 5535 | One-pot synthesis of CoFe 2 O 4 /graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber
[39] | Wang H, Dai Y Y, Gong W J, Geng D Y, Ma S, Li D, Liu W and Zhang Z D 2013 Appl. Phys. Lett. 102 223113 | Broadband microwave absorption of CoNi@C nanocapsules enhanced by dual dielectric relaxation and multiple magnetic resonances
[40] | Wu Q L, Wang J, Jin H H, Yan T Y, Yi G Q, Su X G, Dai W and Wang X 2019 Mater. Lett. 244 138 | MOF-derived rambutan-like nanoporous carbon/nanotubes/Co composites with efficient microwave absorption property
[41] | Xiang J, Li J L, Zhang X H, Ye Q, Xu J H and Shen X Q 2014 J. Mater. Chem. A 2 16905 | Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers
[42] | Zhang X F, Dong X L, Huang H, Liu Y Y, Wang W N, Zhu X G, Lv B and Lei J P 2006 Appl. Phys. Lett. 89 053115 | Microwave absorption properties of the carbon-coated nickel nanocapsules
[43] | Chen Y J, Xiao G, Wang T S, Ouyang Q Y, Qi L H, Ma Y, Gao P, Zhu C L, Cao M S and Jin H B 2011 J. Phys. Chem. C 115 13603 | Porous Fe 3 O 4 /Carbon Core/Shell Nanorods: Synthesis and Electromagnetic Properties
[44] | Sun G B, Wu H, Liao Q L and Zhang Y 2018 Nano Res. 11 2689 | Enhanced microwave absorption performance of highly dispersed CoNi nanostructures arrayed on graphene
[45] | Wen F S, Hou H, Xiang J Y, Zhang X Y, Su Z B, Yuan S J and Liu Z Y 2015 Carbon 89 372 | Fabrication of carbon encapsulated Co 3 O 4 nanoparticles embedded in porous graphitic carbon nanosheets for microwave absorber