[1] | Zhao R, Luo Y, Fernandezdominguez A I and Pendry J B 2013 Phys. Rev. Lett. 111 033602 | Description of van der Waals Interactions Using Transformation Optics
[2] | Beguin L, Vernier A, Chicireanu R, Lahaye T and Browaeys A 2013 Phys. Rev. Lett. 110 263201 | Direct Measurement of the van der Waals Interaction between Two Rydberg Atoms
[3] | Rao A M, Chen J, Richter E, Schlecht U, Eklund P C, Haddon R C, Venkateswaran U D, Kwon Y K and Tomanek D 2001 Phys. Rev. Lett. 86 3895 | Effect of van der Waals Interactions on the Raman Modes in Single Walled Carbon Nanotubes
[4] | Woods L M, Dalvit D A R, Tkatchenko A, Rodriguez-Lopez P, Rodriguez A W and Podgornik R 2016 Rev. Mod. Phys. 88 045003 | Materials perspective on Casimir and van der Waals interactions
[5] | Cardoso C, Soriano D, García-Martínez N A and Fernández-Rossier J 2018 Phys. Rev. Lett. 121 067701 | Van der Waals Spin Valves
[6] | Mi X Y, Yu X, Yao K L, Huang X, Yang N and Lü J T 2015 Nano Lett. 15 5229 | Enhancing the Thermoelectric Figure of Merit by Low-Dimensional Electrical Transport in Phonon-Glass Crystals
[7] | Lee J H, Avsar A, Jung J, Tan J Y, Watanabe K et al. 2015 Nano Lett. 15 319 | van der Waals Force: A Dominant Factor for Reactivity of Graphene
[8] | Stornaiuolo M, De Kloe G E, Rucktooa P, Fish A, van Elk R et al. 2013 Nat. Commun. 4 1875 | Assembly of a π–π stack of ligands in the binding site of an acetylcholine-binding protein
[9] | Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H et al. 2010 Science 328 213 | Two-Dimensional Phonon Transport in Supported Graphene
[10] | Zhang X, Bao H and Hu M 2015 Nanoscale 7 6014 | Bilateral substrate effect on the thermal conductivity of two-dimensional silicon
[11] | Ambrosetti A, Ferri N, Distasio R A and Tkatchenko A 2016 Science 351 1171 | Wavelike charge density fluctuations and van der Waals interactions at the nanoscale
[12] | Baxter J, Bian Z X, Chen G, Danielson D, Dresselhaus M S et al. 2009 Energy & Environ. Sci. 2 559 | Nanoscale design to enable the revolution in renewable energy
[13] | Yang L, Yang N and Li B 2014 Nano Lett. 14 1734 | Extreme Low Thermal Conductivity in Nanoscale 3D Si Phononic Crystal with Spherical Pores
[14] | Ma D, Ding H, Meng H, Feng L, Wu Y, Shiomi J and Yang N 2016 Phys. Rev. B 94 165434 | Nano-cross-junction effect on phonon transport in silicon nanowire cages
[15] | Dresselhaus M S, Chen G, Tang M Y, Yang R, Lee H, Wang D, Ren Z, Fleurial J P and Gogna P 2007 Adv. Mater. 19 1043 | New Directions for Low-Dimensional Thermoelectric Materials
[16] | Shao C, Yu X, Yang N, Yue Y and Bao H 2017 Nanoscale Microscale Thermophys. Eng. 21 201 | A Review of Thermal Transport in Low-Dimensional Materials Under External Perturbation: Effect of Strain, Substrate, and Clustering
[17] | Lindsay L, Broido D A and Mingo N 2011 Phys. Rev. B 83 235428 | Flexural phonons and thermal transport in multilayer graphene and graphite
[18] | Ghosh S, Bao W, Nika D L, Subrina S, Pokatilov E P, Lau C N and Balandin A A 2010 Nat. Mater. 9 555 | Dimensional crossover of thermal transport in few-layer graphene
[19] | Kuang Y, Lindsay L and Huang B 2015 Nano Lett. 15 6121 | Unusual Enhancement in Intrinsic Thermal Conductivity of Multilayer Graphene by Tensile Strains
[20] | Yang N, Ni X, Jiang J W and Li B 2012 Appl. Phys. Lett. 100 093107 | How does folding modulate thermal conductivity of graphene?
[21] | Hsu I K, Pettes M T, Bushmaker A, Aykol M, Shi L and Cronin S B 2009 Nano Lett. 9 590 | Optical Absorption and Thermal Transport of Individual Suspended Carbon Nanotube Bundles
[22] | Lindsay L and Broido D A 2012 Phys. Rev. B 85 035436 | Theory of thermal transport in multilayer hexagonal boron nitride and nanotubes
[23] | Fujii M, Zhang X, Xie H, Ago H, Takahashi K, Ikuta T, Abe H and Shimizu T 2005 Phys. Rev. Lett. 95 065502 | Measuring the Thermal Conductivity of a Single Carbon Nanotube
[24] | Yang J, Yang Y, Waltermire S W, Wu X, Zhang H et al. 2012 Nat. Nanotechnol. 7 91 | Enhanced and switchable nanoscale thermal conduction due to van der Waals interfaces
[25] | Zhang Q, Liu C, Liu X, Liu J, Cui Z et al. 2018 ACS Nano 12 2634 | Thermal Transport in Quasi-1D van der Waals Crystal Ta 2 Pd 3 Se 8 Nanowires: Size and Length Dependence
[26] | Sun T, Wang J and Kang W 2013 Nanoscale 5 128 | Van der Waals interaction-tuned heat transfer in nanostructures
[27] | Su R, Yuan Z, Wang J and Zheng Z 2015 Phys. Rev. E 91 012136 | Tunable heat conduction through coupled Fermi-Pasta-Ulam chains
[28] | Wang X, Kaviany M and Huang B 2017 Nanoscale 9 18022 | Phonon coupling and transport in individual polyethylene chains: a comparison study with the bulk crystal
[29] | Liu Y, Ma Y, Zhao Y, Sun X, Gandara F et al. 2016 Science 351 365 | Weaving of organic threads into a crystalline covalent organic framework
[30] | Tavakkoli K G A, Nicaise S M, Gadelrab K R, Alexander-Katz A, Ross C A and Berggren K K 2016 Nat. Commun. 7 10518 | Multilayer block copolymer meshes by orthogonal self-assembly
[31] | Lee J H, Koh C Y, Singer J P, Jeon S J, Maldovan M, Stein O and Thomas E L 2014 Adv. Mater. 26 532 | 25th Anniversary Article: Ordered Polymer Structures for the Engineering of Photons and Phonons
[32] | Kubo R 1957 J. Phys. Soc. Jpn. 12 570 | Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems
[33] | Plimpton S 1995 J. Comput. Phys. 117 1 | Fast Parallel Algorithms for Short-Range Molecular Dynamics
[34] | Narayan O and Ramaswamy S 2002 Phys. Rev. Lett. 89 200601 | Anomalous Heat Conduction in One-Dimensional Momentum-Conserving Systems
[35] | Kundu A, Dhar A and Narayan O 2009 J. Stat. Mech.: Theory Exp. 2009 L03001 | The Green–Kubo formula for heat conduction in open systems
[36] | Das S G, Dhar A and Narayan O 2014 J. Stat. Phys. 154 204 | Heat Conduction in the α−β Fermi–Pasta–Ulam Chain
[37] | Tang N, Peng Z, Guo R, An M, Chen X, Li X, Yang N and Zang J 2017 Polymers 9 688 | Thermal Transport in Soft PAAm Hydrogels
[38] | Li S, Yu X, Bao H and Yang N 2018 J. Phys. Chem. C 122 13140 | High Thermal Conductivity of Bulk Epoxy Resin by Bottom-Up Parallel-Linking and Strain: A Molecular Dynamics Study
[39] | Stuart S J, Tutein A B and Harrison J A 2000 J. Chem. Phys. 112 6472 | A reactive potential for hydrocarbons with intermolecular interactions
[40] | Henry A, Chen G, Plimpton S J and Thompson A 2010 Phys. Rev. B 82 144308 | 1D-to-3D transition of phonon heat conduction in polyethylene using molecular dynamics simulations
[41] | Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B and Sinnott S B 2002 J. Phys.: Condens. Matter 14 783 | A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons
[42] | Liu A and Stuart S J 2008 J. Comput. Chem. 29 601 | Empirical bond-order potential for hydrocarbons: Adaptive treatment of van der Waals interactions
[43] | Henry A and Chen G 2008 Phys. Rev. Lett. 101 235502 | High Thermal Conductivity of Single Polyethylene Chains Using Molecular Dynamics Simulations
[44] | Ye Z Q, Cao B Y, Yao W J, Feng T and Ruan X 2015 Carbon 93 915 | Spectral phonon thermal properties in graphene nanoribbons
[45] | Zhang T and Luo T 2012 J. Appl. Phys. 112 094304 | Morphology-influenced thermal conductivity of polyethylene single chains and crystalline fibers
[46] | Liao Q, Liu Z, Liu W, Deng C and Yang N 2015 Sci. Rep. 5 16543 | Extremely High Thermal Conductivity of Aligned Carbon Nanotube-Polyethylene Composites
[47] | Yang N, Xu X, Zhang G and Li B 2012 AIP Adv. 2 041410 | Thermal transport in nanostructures
[48] | Parrish K D, Jain A, Larkin J M, Saidi W A and McGaughey A J H 2014 Phys. Rev. B 90 235201 | Origins of thermal conductivity changes in strained crystals
[49] | Shulumba N, Hellman O and Minnich A J 2017 Phys. Rev. Lett. 119 185901 | Lattice Thermal Conductivity of Polyethylene Molecular Crystals from First-Principles Including Nuclear Quantum Effects
[50] | Wang L and Li B 2008 Phys. Rev. Lett. 101 267203 | Thermal Memory: A Storage of Phononic Information
[51] | Liao B, Qiu B, Zhou J, Huberman S, Esfarjani K and Chen G 2015 Phys. Rev. Lett. 114 115901 | Significant Reduction of Lattice Thermal Conductivity by the Electron-Phonon Interaction in Silicon with High Carrier Concentrations: A First-Principles Study
[52] | Oyake T, Feng L, Shiga T, Isogawa M, Nakamura Y and Shiomi J 2018 Phys. Rev. Lett. 120 045901 | Ultimate Confinement of Phonon Propagation in Silicon Nanocrystalline Structure
[53] | Liao B, Zhou J and Chen G 2014 Phys. Rev. Lett. 113 025902 | Generalized Two-Temperature Model for Coupled Phonon-Magnon Diffusion
[54] | Tamm A, Caro M, Caro A, Samolyuk G, Klintenberg M and Correa A A 2018 Phys. Rev. Lett. 120 185501 | Langevin Dynamics with Spatial Correlations as a Model for Electron-Phonon Coupling
[55] | Ihle D 1977 Phys. Status Solidi B 80 619 | Electrical Conductivity in the Hubbard Model Including Electron-Phonon Interaction
[56] | Waldecker L, Bertoni R, Hubener H, Brumme T, Vasileiadis T, Zahn D, Rubio A and Ernstorfer R 2017 Phys. Rev. Lett. 119 036803 | Momentum-Resolved View of Electron-Phonon Coupling in Multilayer
[57] | Ma W L, Yang C Y, Gong X, Lee K and Heeger A J 2005 Adv. Funct. Mater. 15 1617 | Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology
[58] | Furchi M M, Pospischil A, Libisch F, Burgdorfer J and Mueller T 2014 Nano Lett. 14 4785 | Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction