[1] | Wilson J A, Di Salvo F J and Mahajan S 1975 Adv. Phys. 24 117 | Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides
[2] | Steglich F, Aarts J, Bredl C D et al. 1979 Phys. Rev. Lett. 43 1892 | Superconductivity in the Presence of Strong Pauli Paramagnetism: Ce
[3] | Bednorz J G and Muller K A 1986 Z. Phys. B: Condens. Matter 64 189 | Possible highT c superconductivity in the Ba?La?Cu?O system
[4] | Wu M K, Ashburn J R, Torng C J et al. 1987 Phys. Rev. Lett. 58 908 | Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure
[5] | Kamihara Y, Watanabe T, Hirano M et al. 2008 J. Am. Chem. Soc. 130 3296 | Iron-Based Layered Superconductor La[O 1- x F x ]FeAs ( x = 0.05−0.12) with T c = 26 K
[6] | Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006 | Superconductivity at 38 K in the Iron Arsenide
[7] | Ren Z A, Lu W, Yang J et al. 2008 Chin. Phys. Lett. 25 2215 | Superconductivity at 55 K in Iron-Based F-Doped Layered Quaternary Compound Sm[O 1- x F x ] FeAs
[8] | Hsu F C, Luo J Y, Yeh K W et al. 2008 Proc. Natl. Acad. Sci. USA 105 14262 | Superconductivity in the PbO-type structure -FeSe
[9] | Yu J, Liu T, Pan B J et al. 2017 Sci. Bull. 62 218 | Discovery of a novel 112-type iron-pnictide and La-doping induced superconductivity in Eu 1− x La x FeAs 2 ( x = 0–0.15)
[10] | Chevrel R, Sergent M and Prigent J 1971 J. Solid State Chem. 3 515 | Sur de nouvelles phases sulfurées ternaires du molybdène
[11] | Peña O 2015 Physica C 514 95 | Chevrel phases: Past, present and future
[12] | Okuda K, Kitagawa M, Sakakibara T et al. 1980 J. Phys. Soc. Jpn. 48 2157 | Upper Critical Field Measurements up to 600 kG in PbMo 6 S 8
[13] | Petrović A P, Lortz R, Santi G et al. 2011 Phys. Rev. Lett. 106 017003 | Multiband Superconductivity in the Chevrel Phases and
[14] | Bao J K, Liu J Y, Ma C W et al. 2015 Phys. Rev. X 5 011013 | Superconductivity in Quasi-One-Dimensional with Significant Electron Correlations
[15] | Tang Z T, Bao J K, Liu Y et al. 2015 Phys. Rev. B 91 020506(R) | Unconventional superconductivity in quasi-one-dimensional
[16] | Tang Z T, Bao J K, Wang Z et al. 2015 Sci. Chin. Mater. 58 16 | Superconductivity in quasi-one-dimensional Cs2Cr3As3 with large interchain distance
[17] | Mu Q G, Ruan B B, Pan B J et al. 2018 Phys. Rev. Mater. 2 034803 | Ion-exchange synthesis and superconductivity at 8.6 K of with quasi-one-dimensional crystal structure
[18] | Zhong H, Feng X Y, Chen H et al. 2015 Phys. Rev. Lett. 115 227001 | Formation of Molecular-Orbital Bands in a Twisted Hubbard Tube: Implications for Unconventional Superconductivity in
[19] | Watson M D, Feng Y, Nicholson C W et al. 2017 Phys. Rev. Lett. 118 097002 | Multiband One-Dimensional Electronic Structure and Spectroscopic Signature of Tomonaga-Luttinger Liquid Behavior in
[20] | Balakirev F F, Kong T, Jaime M et al. 2015 Phys. Rev. B 91 220505(R) | Anisotropy reversal of the upper critical field at low temperatures and spin-locked superconductivity in
[21] | Luo J, Yang J, Zhou R et al. 2019 Phys. Rev. Lett. 123 047001 | Tuning the Distance to a Possible Ferromagnetic Quantum Critical Point in
[22] | Wu X X, Yang F, Le C C et al. 2015 Phys. Rev. B 92 104511 | Triplet -wave pairing in quasi-one-dimensional superconductors
[23] | Luo J, Wang C, Wang Z et al. 2020 Chin. Phys. B 29 067402 | NMR and NQR studies on transition-metal arsenide superconductors LaRu 2 As 2 , KCa 2 Fe 4 As 4 F 2 , and A 2 Cr 3 As 3
[24] | Cao G H and Zhu Z W 2018 Chin. Phys. B 27 107401 | Superconductivity with peculiar upper critical fields in quasi-one-dimensional Cr-based pnictides
[25] | Mu Q G, Ruan B B, Pan B J et al. 2017 Phys. Rev. B 96 140504(R) | Superconductivity at 5 K in quasi-one-dimensional Cr-based single crystals
[26] | Liu T, Mu Q G, Pan B J et al. 2017 Europhys. Lett. 120 27006 | Superconductivity at 7.3 K in the 133-type Cr-based RbCr 3 As 3 single crystals
[27] | Taddei K M, Sanjeewa L D, Lei B H et al. 2019 Phys. Rev. B 100 220503(R) | Tuning from frustrated magnetism to superconductivity in quasi-one-dimensional through hydrogen doping
[28] | Xiang J J, Yu Y L, Wu S Q et al. 2019 Phys. Rev. Mater. 3 114802 | Superconductivity induced by aging and annealing in
[29] | Wu S Q, Cao C and Cao G H 2019 Phys. Rev. B 100 155108 | Lifshitz transition and nontrivial H-doping effect in the Cr-based superconductor
[30] | Potel M, Chevrel R and Sergent M 1980 J. Solid State Chem. 35 286 | New pseudo-one-dimensional metals: M2Mo6Se6 (M = Na, In, K, TI), M2Mo6S6 (M = K, Rb, Cs), M2Mo6Te6 (M = In, TI)
[31] | Armici J C, Decroux M, Fischer O et al. 1980 Solid State Commun. 33 607 | A new pseudo-one-dimensional superconductor: Tℓ2Mo6Se6
[32] | Petrović A P, Lortz R, Santi G et al. 2010 Phys. Rev. B 82 235128 | Phonon mode spectroscopy, electron-phonon coupling, and the metal-insulator transition in quasi-one-dimensional
[33] | Mu Q G, Ruan B B, Zhao K et al. 2018 Sci. Bull. 63 952 | Superconductivity at 10.4 K in a novel quasi-one-dimensional ternary molybdenum pnictide K2Mo3As3
[34] | Zhao K, Mu Q G, Ruan B B et al. 2020 APL Mater. 8 031103 | Synthesis and superconductivity of a novel quasi-one-dimensional ternary molybdenum pnictide Cs 2 Mo 3 As 3
[35] | Luo X G and Chen X H 2015 Sci. Chin. Mater. 58 77 | Crystal structure and phase diagrams of iron-based superconductors
[36] | Stewart G R 2011 Rev. Mod. Phys. 83 1589 | Superconductivity in iron compounds
[37] | Clogston A M 1962 Phys. Rev. Lett. 9 266 | Upper Limit for the Critical Field in Hard Superconductors
[38] | Liu Z X, Chen M Y, Xiang Y et al. 2019 Phys. Rev. B 100 094511 | Multiband superconductivity and possible nodal gap in revealed by Andreev reflection and single-particle tunneling measurements
[39] | Gurevich A 2003 Phys. Rev. B 67 184515 | Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors
[40] | Wang H, Dong C, Mao Q et al. 2013 Phys. Rev. Lett. 111 207001 | Multiband Superconductivity of Heavy Electrons in a Single Crystal