[1] | Ellmer K 2012 Nat. Photon. 6 809 | Past achievements and future challenges in the development of optically transparent electrodes
[2] | Morales-Masis M, De Wolf S, Woods-Robinson R, Ager J W and Ballif C 2017 Adv. Electron. Mater. 3 1600529 | Transparent Electrodes for Efficient Optoelectronics
[3] | Liu H, Avrutin V, Izyumskaya N, Özgür Ü and Morkoç H 2010 Superlattices Microstruct. 48 458 | Transparent conducting oxides for electrode applications in light emitting and absorbing devices
[4] | Beyer W, Hüpkes J and Stiebig H 2007 Thin Solid Films 516 147 | Transparent conducting oxide films for thin film silicon photovoltaics
[5] | Zhang S B 2002 J. Phys.: Condens. Matter 14 R881 | The microscopic origin of the doping limits in semiconductors and wide-gap materials and recent developments in overcoming these limits: a review
[6] | Wei S H 2004 Comput. Mater. Sci. 30 337 | Overcoming the doping bottleneck in semiconductors
[7] | Woods-Robinson R, Han Y, Zhang H, Ablekim T, Khan I, Persson K A and Zakutayev A 2020 Chem. Rev. 120 4007 | Wide Band Gap Chalcogenide Semiconductors
[8] | Brunin G, Ricci F, Ha V A, Rignanese G M and Hautier G 2019 npj Comput. Mater. 5 63 | Transparent conducting materials discovery using high-throughput computing
[9] | Zhang K H L, Xi K, Blamire M G and Egdell R G 2016 J. Phys.: Condens. Matter 28 383002 | P -type transparent conducting oxides
[10] | Hautier G, Miglio A, Ceder G, Rignanese G M and Gonze X 2013 Nat. Commun. 4 2292 | Identification and design principles of low hole effective mass p-type transparent conducting oxides
[11] | Bhatia A, Hautier G, Nilgianskul T, Miglio A, Sun J, Kim H J, Kim K H, Chen S, Rignanese G M, Gonze X and Suntivich J 2016 Chem. Mater. 28 30 | High-Mobility Bismuth-based Transparent p -Type Oxide from High-Throughput Material Screening
[12] | Williamson B A, Buckeridge J, Brown J, Ansbro S, Palgrave R G and Scanlon D O 2016 Chemistry of Materials acs.chemmater.6b03306 |
[13] | Woods-Robinson R, Broberg D, Faghaninia A, Jain A, Dwaraknath S S and Persson K A 2018 Chem. Mater. 30 8375 | Assessing High-Throughput Descriptors for Prediction of Transparent Conductors
[14] | Youn Y, Lee M, Kim D, Jeong J K, Kang Y and Han S 2019 Chem. Mater. 31 5475 | Large-Scale Computational Identification of p-Type Oxide Semiconductors by Hierarchical Screening
[15] | Varley J B, Miglio A, Ha V A, van Setten M J, Rignanese G M and Hautier G 2017 Chem. Mater. 29 2568 | High-Throughput Design of Non-oxide p-Type Transparent Conducting Materials: Data Mining, Search Strategy, and Identification of Boron Phosphide
[16] | Wei L, Xu X, Gurudayal, Bullock J and Ager J W 2019 Chem. Mater. 31 7340 | Machine Learning Optimization of p-Type Transparent Conducting Films
[17] | Kormath Madam Raghupathy R, Kühne T D, Felser C and Mirhosseini H 2018 J. Mater. Chem. C 6 541 | Rational design of transparent p-type conducting non-oxide materials from high-throughput calculations
[18] | Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H and Hosono H 1997 Nature 389 939 | P-type electrical conduction in transparent thin films of CuAlO2
[19] | Sato H, Minami T, Takata S and Yamada T 1993 Thin Solid Films 236 27 | Transparent conducting p-type NiO thin films prepared by magnetron sputtering
[20] | Wang Z, Nayak P K, Caraveo-Frescas J A and Alshareef H N 2016 Adv. Mater. 28 3831 | Recent Developments in p-Type Oxide Semiconductor Materials and Devices
[21] | Yang C, Knei M, Lorenz M and Grundmann M 2016 Proc. Natl. Acad. Sci. USA 113 12929 | Room-temperature synthesized copper iodide thin film as degenerate p-type transparent conductor with a boosted figure of merit
[22] | Yamada N, Ino R and Ninomiya Y 2016 Chem. Mater. 28 4971 | Truly Transparent p-Type γ-CuI Thin Films with High Hole Mobility
[23] | Huang F Q, Liu M L and Yang C 2011 Sol. Energy Mater. Sol. Cells 95 2924 | Highly enhanced p-type electrical conduction in wide band gap Cu1+xAl1−xS2 polycrystals
[24] | Sun Y Y, Agiorgousis M L, Zhang P and Zhang S 2015 Nano Lett. 15 581 | Chalcogenide Perovskites for Photovoltaics
[25] | Perera S, Hui H, Zhao C, Xue H, Sun F, Deng C, Gross N, Milleville C, Xu X, Watson D F, Weinstein B, Sun Y Y, Zhang S and Zeng H 2016 Nano Energy 22 129 | Chalcogenide perovskites – an emerging class of ionic semiconductors
[26] | Gross N, Sun Y Y, Perera S, Hui H, Wei X, Zhang S, Zeng H and Weinstein B A 2017 Phys. Rev. Appl. 8 044014 | Stability and Band-Gap Tuning of the Chalcogenide Perovskite in Raman and Optical Investigations at High Pressures
[27] | Niu S, Milam-Guerrero J, Zhou Y, Ye K, Zhao B, Melot B C and Ravichandran J 2018 J. Mater. Res. 33 4135 | Thermal stability study of transition metal perovskite sulfides
[28] | Wei X, Hui H, Zhao C, Deng C, Han M, Yu Z, Sheng A, Roy P, Chen A, Lin J, Watson D F, Sun Y Y, Thomay T, Yang S, Jia Q, Zhang S and Zeng H 2020 Nano Energy 68 104317 | Realization of BaZrS3 chalcogenide perovskite thin films for optoelectronics
[29] | Niu S, Huyan H, Liu Y, Yeung M, Ye K, Blankemeier L, Orvis T, Sarkar D, Singh D J, Kapadia R and Ravichandran J 2017 Adv. Mater. 29 1604733 | Bandgap Control via Structural and Chemical Tuning of Transition Metal Perovskite Chalcogenides
[30] | Meng W, Saparov B, Hong F, Wang J, Mitzi D B and Yan Y 2016 Chem. Mater. 28 821 | Alloying and Defect Control within Chalcogenide Perovskites for Optimized Photovoltaic Application
[31] | Hanzawa K, Iimura S, Hiramatsu H and Hosono H 2019 J. Am. Chem. Soc. 141 5343 | Material Design of Green-Light-Emitting Semiconductors: Perovskite-Type Sulfide SrHfS 3
[32] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 | Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
[33] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 | From ultrasoft pseudopotentials to the projector augmented-wave method
[34] | Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett. 100 136406 | Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces
[35] | Sun J, Ruzsinszky A and Perdew J P 2015 Phys. Rev. Lett. 115 036402 | Strongly Constrained and Appropriately Normed Semilocal Density Functional
[36] | Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207 | Hybrid functionals based on a screened Coulomb potential
[37] | Hybertsen M S and Louie S G 1986 Phys. Rev. B 34 5390 | Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies
[38] | Togo A and Tanaka I 2015 Scr. Mater. 108 1 | First principles phonon calculations in materials science
[39] | Hellman O, Abrikosov I A and Simak S I 2011 Phys. Rev. B 84 180301 | Lattice dynamics of anharmonic solids from first principles
[40] | Rodier N and Laruelle P 1970 C. R. Acad. Sc. (Paris) C270 2127 |
[41] | Rodier N, Laruelle P and Flahaut J 1969 C. R. Acad. Sc. (Paris) C269 1391 |
[42] | IJdo D 1980 Acta Crystallogr. Sect. B 36 2403 | Cerium scandium sulphide: structure refinement by powder neutron diffraction
[43] | Range K J, Gietl A and Klement U 1993 Z. Kristallogr. 207 147 | Crystal structure of cerium scandium trisulfide, CeScS3
[44] | Glazer A 1972 Acta Crystallogr. Sect. B 28 3384 | The classification of tilted octahedra in perovskites
[45] | Yamaoka S and Okai B 1970 Mater. Res. Bull. 5 789 | Preparations of BaSnS3, SrSnS3 and PbSnS3 at high pressure
[46] | Lee C S, Kleinke K M and Kleinke H 2005 Solid State Sci. 7 1049 | Synthesis, structure, and electronic and physical properties of the two SrZrS3 modifications
[47] | Hahn H and Mutschke U 1957 Z. Anorg. Allg. Chem. 288 269 | Untersuchungen �ber tern�re Chalkogenide. XI. Versuche zur Darstellung von Thioperowskiten
[48] | Noel H and Padiou J 1976 Acta Crystallogr. Sect. B 32 1593 | Structure cristalline de FeUS 3
[49] | Murakami M, Hirose K, Kawamura K, Sata N and Ohishi Y 2004 Science 304 855 | Post-Perovskite Phase Transition in MgSiO3
[50] | Crevecoeur C and Romers C 1964 Proc. Koninklijke Nederlandse Acad. Van Wetenschappen 67 289 |
[51] | Rodier N 1973 Bull. La Societe Francaise Mineralogie Cristallographie 96 350 | Structure cristalline du sulfure mixte de thulium et de cérium TmCeS3
[52] | Kuhar K, Crovetto A, Pandey M, Thygesen K S, Seger B, Vesborg P C K, Hansen O, Chorkendorff I and Jacobsen K W 2017 Energy & Environ. Sci. 10 2579 | Sulfide perovskites for solar energy conversion applications: computational screening and synthesis of the selected compound LaYS 3
[53] | Sze S M 1969 Physics of Semiconductor Devices (New Jersey: Wiley) |
[54] | Ricci F, Chen W, Aydemir U, Snyder G J, Rignanese G M, Jain A and Hautier G 2017 Sci. Data 4 170085 | An ab initio electronic transport database for inorganic materials
[55] | Freysoldt C, Neugebauer J and van de Walle C G 2009 Phys. Rev. Lett. 102 016402 | Fully Ab Initio Finite-Size Corrections for Charged-Defect Supercell Calculations