Processing math: 100%

Performance Enhancement of AlGaN/GaN MIS-HEMTs Realized via Supercritical Nitridation Technology

Funds: Supported by the Shenzhen Science and Technology Innovation Committee (Grant Nos. ZDSYS201802061805105, JCYJ20190808155007550K, QJSCX20170728102129176, and JCYJ20170810163407761), and the National Natural Science Foundation of China (Grant No. U1613215).
  • Received Date: May 08, 2020
  • Published Date: August 31, 2020
  • This paper proposes a method of repairing interface defects by supercritical nitridation technology, in order to suppress the threshold voltage shift of AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MIS-HEMTs). We find that supercritical NH3 fluid has the characteristics of both liquid NH3 and gaseous NH3 simultaneously, i.e., high penetration and high solubility, which penetrate the packaging of MIS-HEMTs. In addition, NH2 produced via the auto coupling ionization of NH3 has strong nucleophilic ability, and is able to fill nitrogen vacancies near the GaN surface created by high temperature processes. After supercritical fluid treatment, the threshold voltage shift is reduced from 1 V to 0 V, and the interface trap density is reduced by two orders of magnitude. The results show that the threshold voltage shift of MIS-HEMTs can be effectively suppressed by means of supercritical nitridation technology.
  • Article Text

  • [1]
    Saito W, Nitta T, Kakiuchi Y and Saito Y 2007 IEEE Trans. Electron Devices 54 1825 doi: 10.1109/TED.2007.901150

    CrossRef Google Scholar

    [2]
    Wu T, Marcon D, Bakeroot B and Jaeger B D 2015 Appl. Phys. Lett. 107 093507 doi: 10.1063/1.4930076

    CrossRef Google Scholar

    [3]
    Dong B, Lin J, Wang N and Jiang L 2016 AIP Adv. 6 095021 doi: 10.1063/1.4963740

    CrossRef Google Scholar

    [4]
    Uemoto Y, Hikita M, Ueno H and Matsuo H 2007 IEEE Trans. Electron Devices 54 3393 doi: 10.1109/TED.2007.908601

    CrossRef Google Scholar

    [5]
    Dutta G, Dasgupta N and Dasgupta A 2016 IEEE Trans. Electron Devices 63 1450 doi: 10.1109/TED.2016.2529428

    CrossRef Google Scholar

    [6]
    Zhang Z L, Li W Y, Fu K et al.. 2017 IEEE Electron Device Lett. 38 236 doi: 10.1109/LED.2016.2636136

    CrossRef Google Scholar

    [7]
    Tsai C T, Chang K M, Liu P T, Yang and P Y 2007 Appl. Phys. Lett. 91 12109 doi: 10.1063/1.2753762

    CrossRef Google Scholar

    [8]
    Chattopadhyay P and Gupta R B 2001 Int. J. Pharm. 228 19 doi: 10.1016/S0378-51730100803-1

    CrossRef Google Scholar

    [9]
    Sun H, Liu M, Liu P and Lin X 2017 IEEE Trans. Electron Devices 65 622 doi: 10.1109/TED.2017.2778072

    CrossRef Google Scholar

    [10]
    Stoklas R, Gregušová D and Novák J 2008 Appl. Phys. Lett. 93 124103 doi: 10.1063/1.2990627

    CrossRef Google Scholar

    [11]
    Hashizume T and Hasegawa H 2004 Appl. Surf. Sci. 234 1 doi: 10.1016/j.apsusc.2004.05.086

    CrossRef Google Scholar

    [12]
    Robertson J 2009 Appl. Phys. Lett. 94 152104 doi: 10.1063/1.3120554

    CrossRef Google Scholar

    [13]
    Marrani A G, Caprioli F, Boccia A, Zanoni R 2014 J. Solid State Electrochem. 18 505 doi: 10.1007/s10008-013-2281-2

    CrossRef Google Scholar

    [14]
    Chuvenkova O A, Domashevskaya E P, Ryabtsev S V 2015 Phys. Solid State 57 1 doi: 10.1134/S1063783415010199

    CrossRef Google Scholar

    [15]
    Yamada Y, Yasuda H, Murota K and Nakamura M 2013 J. Mater. Sci. 48 8171 doi: 10.1007/s10853-013-7630-0

    CrossRef Google Scholar

    [16]
    George M M, Craig A K and Manuel U O 2004 US Patent 2004/0049079 A1

    Google Scholar

    [17]
    Yu J, Liu Y, Tang J, Wang X and Zhou J 2014 Angew. Chem. 53 9512 doi: 10.1002/anie.201404432

    CrossRef Google Scholar

Catalog

    Article views (321) PDF downloads (518) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return