[1] | Britt J and Ferekides C 1993 Appl. Phys. Lett. 62 2851 | Thin‐film CdS/CdTe solar cell with 15.8% efficiency
[2] | Wu X Z 2004 Sol. Energy 77 803 | High-efficiency polycrystalline CdTe thin-film solar cells
[3] | Il'chuk G, Kusnezh V, Rud V Y, Rud Y V, Shapowal P Y and Petrus R Y 2010 Semiconductors 44 318 | Photosensitivity of n-CdS/p-CdTe heterojunctions obtained by chemical surface deposition of CdS
[4] | Green M A, Dunlop E D, Levi D H, Hohl-Ebinger J, Yoshita M and Ho-Baillie A W Y 2020 Prog. Photovoltaics 28 3 | Solar cell efficiency tables (Version 55)
[5] | Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510 | Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells
[6] | Wei S H, Zhang S B and Zunger A 2000 J. Appl. Phys. 87 1304 | First-principles calculation of band offsets, optical bowings, and defects in CdS, CdSe, CdTe, and their alloys
[7] | Dharmadasa I M, Samantilleke A P, Chaure N B and Young J 2002 Semicond. Sci. Technol. 17 1238 | New ways of developing glass/conducting glass/CdS/CdTe/metal thin-film solar cells based on a new model
[8] | Boieriu P, Sporken R and Sivananthan S 2002 J. Vac. Sci. & Technol. B 20 1777 | Valence band offset at the CdS/CdTe interface
[9] | Minemoto T, Matsui T, Takakura H, Hamakawa Y, Negami T, Hashimoto Y, Uenoyama T and Kitagawa M 2001 Sol. Energy Mater. Sol. Cells 67 83 | Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation
[10] | Loginov Y Y, Durose K, AlAllak H M, Galloway S A, Oktik S, Brinkman A W, Richter H and Bonnet D 1996 J. Cryst. Growth 161 159 | Transmission electron microscopy of based solar cells
[11] | Li C, Poplawsky J, Yan Y F and Pennycook S J 2017 Mater. Sci. Semicond. Process. 65 64 | Understanding individual defects in CdTe thin-film solar cells via STEM: From atomic structure to electrical activity
[12] | Smith D J, Lu J, Aoki T, McCartney M R and Zhang Y H 2017 J. Mater. Res. 32 921 | Observation of compound semiconductors and heterovalent interfaces using aberration-corrected scanning transmission electron microscopy
[13] | McCandless B E, Moulton L V and Birkmire R W 1997 Prog. Photovoltaics 5 249 | Recrystallization and sulfur diffusion in CdCl2-treated CdTe/CdS thin films
[14] | McCandless B E, Engelmann M G and Birkmire R W 2001 J. Appl. Phys. 89 988 | Interdiffusion of CdS/CdTe thin films: Modeling x-ray diffraction line profiles
[15] | Wu X, Asher S, Levi D H, King D E, Yan Y, Gessert T A and Sheldon P 2001 J. Appl. Phys. 89 4564 | Interdiffusion of CdS and Zn2SnO4 layers and its application in CdS/CdTe polycrystalline thin-film solar cells
[16] | Ohata K, Saraie J and Tanaka T 1973 Jpn. J. Appl. Phys. 12 1641 | Optical Energy Gap of the Mixed Crystal CdS x Te 1- x
[17] | Pal R, Dutta J, Chaudhuri S and Pal A K 1993 J. Phys. D 26 704 | CdS x Te 1-x films: preparation and properties
[18] | Klein A 2015 J. Phys.: Condens. Matter 27 134201 | Energy band alignment in chalcogenide thin film solar cells from photoelectron spectroscopy
[19] | Lane D W 2006 Sol. Energy Mater. Sol. Cells 90 1169 | A review of the optical band gap of thin film CdSxTe1−x
[20] | Oman D M, Dugan K M, Killian J L, Ceekala V, Ferekides C S and Morel D L 1995 Appl. Phys. Lett. 67 1896 | Reduction of recombination current in CdTe/CdS solar cells
[21] | Hohenberg P and Kohn W 1964 Phys. Rev. B 136 B864 | Inhomogeneous Electron Gas
[22] | Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 | Self-Consistent Equations Including Exchange and Correlation Effects
[23] | Shang C and Liu Z P 2013 J. Chem. Theory Comput. 9 1838 | Stochastic Surface Walking Method for Structure Prediction and Pathway Searching
[24] | Shang C, Zhang X J and Liu Z P 2014 Phys. Chem. Chem. Phys. 16 17845 | Stochastic surface walking method for crystal structure and phase transition pathway prediction
[25] | Huang S D, Shang C, Zhang X J and Liu Z P 2017 Chem. Sci. 8 6327 | Material discovery by combining stochastic surface walking global optimization with a neural network
[26] | Ma S C, Shang C and Liu Z P 2019 J. Chem. Phys. 151 050901 | Heterogeneous catalysis from structure to activity via SSW-NN method
[27] | Lewis N S 2007 Science 315 798 | Toward Cost-Effective Solar Energy Use
[28] | Alder B J and Wainwright T E 1959 J. Chem. Phys. 31 459 | Studies in Molecular Dynamics. I. General Method
[29] | Gibson J B, Goland A N, Milgram M and Vineyard G H 1960 Phys. Rev. 120 1229 | Dynamics of Radiation Damage
[30] | Rahman A 1964 Phys. Rev. 136 A405 | Correlations in the Motion of Atoms in Liquid Argon
[31] | Wei S H and Zunger A 1998 Appl. Phys. Lett. 72 2011 | Calculated natural band offsets of all II–VI and III–V semiconductors: Chemical trends and the role of cation d orbitals
[32] | Behler J and Parrinello M 2007 Phys. Rev. Lett. 98 146401 | Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces
[33] | Artrith N, Morawietz T and Behler J 2011 Phys. Rev. B 83 153101 | High-dimensional neural-network potentials for multicomponent systems: Applications to zinc oxide
[34] | Behler J 2014 J. Phys.: Condens. Matter 26 183001 | Representing potential energy surfaces by high-dimensional neural network potentials
[35] | Huang S D, Shang C, Kang P L and Liu Z P 2018 Chem. Sci. 9 8644 | Atomic structure of boron resolved using machine learning and global sampling
[36] | Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15 | Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
[37] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 | From ultrasoft pseudopotentials to the projector augmented-wave method
[38] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | Generalized Gradient Approximation Made Simple
[39] | Huang S D, Shang C, Kang P L, Zhang X J and Liu Z P 2019 WIREs Comput. Mol. Sci. 9 e1415 | LASP: Fast global potential energy surface exploration
[40] | Wei S H and Zhang S B 2000 Phys. Rev. B 62 6944 | Structure stability and carrier localization in semiconductors
[41] | Wright K and Gale J D 2004 Phys. Rev. B 70 035211 | Interatomic potentials for the simulation of the zinc-blende and wurtzite forms of and : Bulk structure, properties, and phase stability
[42] | Lang L, Zhang Y Y, Xu P, Chen S Y, Xiang H J and Gong X G 2015 Phys. Rev. B 92 075102 | Three-step approach for computing band offsets and its application to inorganic halide perovskites
[43] | Niles D W and Höchst H 1990 Phys. Rev. B 41 12710 | Band offsets and interfacial properties of cubic CdS grown by molecular-beam epitaxy on CdTe(110)
[44] | Fritsche J, Schulmeyer T, Kraft D, Thissen A, Klein A and Jaegermann W 2002 Appl. Phys. Lett. 81 2297 | Utilization of sputter depth profiling for the determination of band alignment at polycrystalline CdTe/CdS heterointerfaces
[45] | Gu H J, Zhang Y Y, Chen S Y, Xiang H J and Gong X G 2018 Phys. Rev. B 97 235308 | Intermediate-phase method for computing the natural band offset between two materials with dissimilar structures