[1] | Kratochvil H T, Carr J K, Matulef K et al. 2016 Science 353 1040 | Instantaneous ion configurations in the K + ion channel selectivity filter revealed by 2D IR spectroscopy
[2] | Liu S and Gonen T 2018 Commun. Biol. 1 38 | MicroED structure of the NaK ion channel reveals a Na+ partition process into the selectivity filter
[3] | Nair R R, Wu H A, Jayaram P et al. 2012 Science 335 442 | Unimpeded Permeation of Water Through Helium-Leak-Tight Graphene-Based Membranes
[4] | Joshi R K, Carbone P, Wang F C et al. 2014 Science 343 752 | Precise and Ultrafast Molecular Sieving Through Graphene Oxide Membranes
[5] | Jain T, Rasera B C, Guerrero R J S et al. 2015 Nat. Nanotechnol. 10 1053 | Heterogeneous sub-continuum ionic transport in statistically isolated graphene nanopores
[6] | Radha B, Esfandiar A, Wang F C et al. 2016 Nature 538 222 | Molecular transport through capillaries made with atomic-scale precision
[7] | Wen Q, Yan D X, Liu F et al. 2016 Adv. Funct. Mater. 26 5796 | Highly Selective Ionic Transport through Subnanometer Pores in Polymer Films
[8] | Abraham J, Vasu K S, Williams C D et al. 2017 Nat. Nanotechnol. 12 546 | Tunable sieving of ions using graphene oxide membranes
[9] | Esfandiar A, Radha B, Wang F C et al. 2017 Science 358 511 | Size effect in ion transport through angstrom-scale slits
[10] | Wang P F, Wang M, Liu F et al. 2018 Nat. Commun. 9 569 | Ultrafast ion sieving using nanoporous polymeric membranes
[11] | Zhang H C, Hou J, Hu Y X et al. 2018 Sci. Adv. 4 eaaq0066 | Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores
[12] | Wang P F, Wang X, Ling Y et al. 2018 Radiat. Meas. 119 80 | Ultrafast selective ionic transport through heat-treated polyethylene terephthalate track membranes with sub-nanometer pores
[13] | Feng Y X, Zhang Y C, Ying C F et al. 2015 Genomics Proteomics & Bioinf. 13 4 | Nanopore-based Fourth-generation DNA Sequencing Technology
[14] | Wang L D, Boutilier M S H, Kidambi P R et al. 2017 Nat. Nanotechnol. 12 509 | Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes
[15] | Wei N, Peng X S and Xu Z P 2014 ACS Appl. Mater. & Interfaces 6 5877 | Understanding Water Permeation in Graphene Oxide Membranes
[16] | Sahu S, Di Ventra M and Zwolak M 2017 Nano Lett. 17 4719 | Dehydration as a Universal Mechanism for Ion Selectivity in Graphene and Other Atomically Thin Pores
[17] | Wang M, Shen W H, Ding S Y et al. 2018 Nanoscale 10 18821 | A coupled effect of dehydration and electrostatic interactions on selective ion transport through charged nanochannels
[18] | Moy G, Corry B, Kuyucak S et al. 2000 Biophys. J. 78 2349 | Tests of Continuum Theories as Models of Ion Channels. I. Poisson−Boltzmann Theory versus Brownian Dynamics
[19] | Corry B, Kuyucak S and Chung S H 2000 Biophys. J. 78 2364 | Tests of Continuum Theories as Models of Ion Channels. II. Poisson–Nernst–Planck Theory versus Brownian Dynamics
[20] | Song C and Corry B 2011 PLOS ONE 6 e21204 | Testing the Applicability of Nernst-Planck Theory in Ion Channels: Comparisons with Brownian Dynamics Simulations
[21] | Chen P R, Xu Z C, Gu Y et al. 2016 Chin. Phys. B 25 086601 | Collective diffusion in carbon nanotubes: Crossover between one dimension and three dimensions
[22] | Gao Y, Huang J, Liu Y W et al. 2019 Curr. Opin. Electrochem. 13 107 | Charge transport in confined concentrated solutions: A minireview
[23] | Suk M E and Aluru N R 2014 J. Chem. Phys. 140 084707 | Ion transport in sub-5-nm graphene nanopores
[24] | Mouterde T, Keerthi A, Poggioli A R et al. 2019 Nature 567 87 | Molecular streaming and its voltage control in ångström-scale channels
[25] | Qiao Y and Lu B Z 2016 Chin. Phys. B 25 018705 | Improvements in continuum modeling for biomolecular systems
[26] | Gillespie D, Xu L and Meissner G 2014 Biophys. J. 107 2263 | Selecting Ions by Size in a Calcium Channel: The Ryanodine Receptor Case Study
[27] | Laio A and Torre V 1999 Biophys. J. 76 129 | Physical Origin of Selectivity in Ionic Channels of Biological Membranes
[28] | Zwolak M, Lagerqvist J and Di Ventra M 2009 Phys. Rev. Lett. 103 128102 | Quantized Ionic Conductance in Nanopores
[29] | Zwolak M, Wilson J and Di Ventra M 2010 J. Phys.: Condens. Matter 22 454126 | Dehydration and ionic conductance quantization in nanopores
[30] | Schlaich A, Knapp E W and Netz R R 2016 Phys. Rev. Lett. 117 048001 | Water Dielectric Effects in Planar Confinement
[31] | Fumagalli L, Esfandiar A, Fabregas R et al. 2018 Science 360 1339 | Anomalously low dielectric constant of confined water
[32] | Amiri H, Shepard K L, Nuckolls C et al. 2017 Nano Lett. 17 1204 | Single-Walled Carbon Nanotubes: Mimics of Biological Ion Channels
[33] | Baimpos T, Shrestha B R, Raman S et al. 2014 Langmuir 30 4322 | Effect of Interfacial Ion Structuring on Range and Magnitude of Electric Double Layer, Hydration, and Adhesive Interactions between Mica Surfaces in 0.05–3 M Li + and Cs + Electrolyte Solutions
[34] | Eisenman G 1962 Biophys. J. 2 259 | Cation Selective Glass Electrodes and their Mode of Operation
[35] | Krauss D, Eisenberg B and Gillespie D 2011 Eur. Biophys. J. 40 775 | Selectivity sequences in a model calcium channel: role of electrostatic field strength
[36] | Wu J 1991 Biophys. J. 60 238 | Microscopic model for selective permeation in ion channels
[37] | Luchinsky D G, Tindjong R, Kaufman I et al. 2009 Phys. Rev. E 80 021925 | Self-consistent analytic solution for the current and the access resistance in open ion channels
[38] | Ohtaki H and Radnai T 1993 Chem. Rev. 93 1157 | Structure and dynamics of hydrated ions
[39] | Marcus Y 1991 J. Chem. Soc., Faraday Trans. 87 2995 | Thermodynamics of solvation of ions. Part 5.—Gibbs free energy of hydration at 298.15 K
[40] | Saxena A and García A E 2015 J. Phys. Chem. B 119 219 | Multisite Ion Model in Concentrated Solutions of Divalent Cations (MgCl 2 and CaCl 2 ): Osmotic Pressure Calculations
[41] | Yoo J, Wilson J and Aksimentiev A 2016 Biopolymers 105 752 | Improved model of hydrated calcium ion for molecular dynamics simulations using classical biomolecular force fields
[42] | Hong S, Constans C, Surmani Martins M V et al. 2017 Nano Lett. 17 728 | Scalable Graphene-Based Membranes for Ionic Sieving with Ultrahigh Charge Selectivity
[43] | Zhang Z K, Shen W H, Lin L X et al. 2020 Adv. Sci. 7 2000286 | Vertically Transported Graphene Oxide for High‐Performance Osmotic Energy Conversion
[44] | Xu W L, Fang C, Zhou F L et al. 2017 Nano Lett. 17 2928 | Self-Assembly: A Facile Way of Forming Ultrathin, High-Performance Graphene Oxide Membranes for Water Purification
[45] | Ren C E, Hatzell K B, Alhabeb M et al. 2015 J. Phys. Chem. Lett. 6 4026 | Charge- and Size-Selective Ion Sieving Through Ti 3 C 2 T x MXene Membranes
[46] | Feng J D, Liu K, Graf M et al. 2016 Nat. Mater. 15 850 | Observation of ionic Coulomb blockade in nanopores
[47] | Guo Y, Ying Y L, Mao Y Y et al. 2016 Ngewandte Chem.-Int. Ed. 55 15120 | Polystyrene Sulfonate Threaded through a Metal-Organic Framework Membrane for Fast and Selective Lithium-Ion Separation
[48] | Surwade S P, Smirnov S N, Vlassiouk I V et al. 2015 Nat. Nanotechnol. 10 459 | Water desalination using nanoporous single-layer graphene