[1] | Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495 | Type-II Weyl semimetals
[2] | Deng K, Wan G, Deng P, Zhang K, Ding S, Wang E, Yan M, Huang H, Zhang H, Xu Z, Denlinger J, Fedorov A, Yang H, Duan W, Yao H, Wu Y, Fan S, Zhang H, Chen X and Zhou S 2016 Nat. Phys. 12 1105 | Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2
[3] | Wang Y, Liu E, Liu H, Pan Y, Zhang L, Zeng J, Fu Y, Wang M, Xu K, Huang Z, Wang Z, Lu H Z, Xing D, Wang B, Wan X and Miao F 2016 Nat. Commun. 7 13142 | Gate-tunable negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe2
[4] | Lv Y Y, Li X, Zhang B B, Deng W Y, Yao S H, Chen Y B, Zhou J, Zhang S T, Lu M H, Zhang L, Tian M, Sheng L and Chen Y F 2017 Phys. Rev. Lett. 118 096603 | Experimental Observation of Anisotropic Adler-Bell-Jackiw Anomaly in Type-II Weyl Semimetal Crystals at the Quasiclassical Regime
[5] | Ma J, Gu Q, Liu Y, Lai J, Yu P, Zhuo X, Liu Z, Chen J H, Feng J and Sun D 2019 Nat. Mater. 18 476 | Nonlinear photoresponse of type-II Weyl semimetals
[6] | Wang Q, Zheng J, He Y, Cao J, Liu X, Wang M, Ma J, Lai J, Lu H, Jia S, Yan D, Shi Y, Duan J, Han J, Xiao W, Chen J H, Sun K, Yao Y and Sun D 2019 Nat. Commun. 10 5736 | Robust edge photocurrent response on layered type II Weyl semimetal WTe2
[7] | Chen D, Zhao L X, He J B, Liang H, Zhang S, Li C H, Shan L, Wang S C, Ren Z A, Ren C and Chen G F 2016 Phys. Rev. B 94 174411 | Magnetotransport properties of the type-II Weyl semimetal candidate
[8] | Frenzel A J, Homes C C, Gibson Q D, Shao Y M, Post K W, Charnukha A, Cava R J and Basov D N 2017 Phys. Rev. B 95 245140 | Anisotropic electrodynamics of type-II Weyl semimetal candidate
[9] | Zhang K, Du Y, Qi Z, Cheng B, Fan X, Wei L, Li L, Wang D, Yu G, Hu S, Sun C, Huang Z, Chu J, Wan X and Zeng C 2020 Phys. Rev. Appl. 13 014058 | Room-Temperature Anisotropic Plasma Mirror and Polarization-Controlled Optical Switch Based on Type-II Weyl Semimetal
[10] | Autes G, Gresch D, Troyer M, Soluyanov A A and Yazyev O V 2016 Phys. Rev. Lett. 117 066402 | Robust Type-II Weyl Semimetal Phase in Transition Metal Diphosphides ( , W)
[11] | Kumar N, Sun Y, Xu N, Manna K, Yao M, Suss V, Leermakers I, Young O, Forster T, Schmidt M, Borrmann H, Yan B, Zeitler U, Shi M, Felser C and Shekhar C 2017 Nat. Commun. 8 1642 | Extremely high magnetoresistance and conductivity in the type-II Weyl semimetals WP2 and MoP2
[12] | Razzoli E, Zwartsenberg B, Michiardi M, Boschini F, Day R P, Elfimov I S, Denlinger J D, Süss V, Felser C and Damascelli A 2018 Phys. Rev. B 97 201103(R) | Stable Weyl points, trivial surface states, and particle-hole compensation in
[13] | Yao M Y, Xu N, Wu Q S, Autes G, Kumar N, Strocov V N, Plumb N C, Radovic M, Yazyev O V, Felser C, Mesot J and Shi M 2019 Phys. Rev. Lett. 122 176402 | Observation of Weyl Nodes in Robust Type-II Weyl Semimetal
[14] | Kosevich A M 2004 Low Temp. Phys. 30 97 | Topology and solid-state physics (Review)
[15] | Berry M V 1984 Proc. R. Soc. London A 392 45 | Quantal Phase Factors Accompanying Adiabatic Changes
[16] | Mikitik G P and Sharlai Y V 1999 Phys. Rev. Lett. 82 2147 | Manifestation of Berry's Phase in Metal Physics
[17] | Fang Z, Nagaosa N, Takahashi K S, Asamitsu A, Mathieu R, Ogasawara T, Yamada H, Kawasaki M, Tokura Y and Terakura K 2003 Science 302 92 | The Anomalous Hall Effect and Magnetic Monopoles in Momentum Space
[18] | Mikitik G and Sharlai Y V 2004 Phys. Rev. Lett. 93 106403 | Berry Phase and de Haas–van Alphen Effect in
[19] | Yao Y, Kleinman L, MacDonald A, Sinova J, Jungwirth T, Wang D S, Wang E and Niu Q 2004 Phys. Rev. Lett. 92 037204 | First Principles Calculation of Anomalous Hall Conductivity in Ferromagnetic bcc Fe
[20] | Murakawa H, Bahramy M S, Tokunaga M, Kohama Y, Bell C, Kaneko Y, Nagaosa N, Hwang H Y and Tokura Y 2013 Science 342 1490 | Detection of Berry's Phase in a Bulk Rashba Semiconductor
[21] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197 | Two-dimensional gas of massless Dirac fermions in graphene
[22] | Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201 | Experimental observation of the quantum Hall effect and Berry's phase in graphene
[23] | Sacepe B, Oostinga J B, Li J, Ubaldini A, Couto N J, Giannini E and Morpurgo A F 2011 Nat. Commun. 2 575 | Gate-tuned normal and superconducting transport at the surface of a topological insulator
[24] | Qu D X, Hor Y S, Xiong J, Cava R J and Ong N P 2010 Science 329 821 | Quantum Oscillations and Hall Anomaly of Surface States in the Topological Insulator Bi2Te3
[25] | Zhao Y, Liu H, Zhang C, Wang H, Wang J, Lin Z, Xing Y, Lu H, Liu J, Wang Y, Brombosz S M, Xiao Z, Jia S, Xie X C and Wang J 2015 Phys. Rev. X 5 031037 | Anisotropic Fermi Surface and Quantum Limit Transport in High Mobility Three-Dimensional Dirac Semimetal
[26] | Hu J, Liu J Y, Graf D, Radmanesh S M, Adams D J, Chuang A, Wang Y, Chiorescu I, Wei J, Spinu L and Mao Z Q 2016 Sci. Rep. 6 18674 | π Berry phase and Zeeman splitting of Weyl semimetal TaP
[27] | Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959 | Berry phase effects on electronic properties
[28] | Mathis H, Glaum R and Gruehn R 1991 Acta Chem. Scand. 45 781 | Reduction of WO3 by Phosphorus.
[29] | Rundqvist S and Lundstrom T 1963 Acta Chem. Scand. 17 37 | X-Ray Studies of Molybdenum and Tungsten Phosphides.
[30] | Rühl R and Jeitschko W 1983 Monatsh. Chem. - Chem. Mon. 114 817 | �ber Polyphosphide von Chrom, Molybd�n und Wolfram
[31] | Schönemann R, Aryal N, Zhou Q, Chiu Y C, Chen K W, Martin T J, McCandless G T, Chan J Y, Manousakis E and Balicas L 2017 Phys. Rev. B 96 121108(R) | Fermi surface of the Weyl type-II metallic candidate
[32] | Wang A, Graf D, Liu Y, Du Q, Zheng J, Lei H and Petrovic C 2017 Phys. Rev. B 96 121107(R) | Large magnetoresistance in the type-II Weyl semimetal
[33] | Ashcroft N and Mermin N 1976 Solid State Physics (San Diego: Harcourt College Publisher) |
[34] | Ali M N, Schoop L M, Garg C, Lippmann J M, Lara E, Lotsch B and Parkin S S 2016 Sci. Adv. 2 e1601742 | Butterfly magnetoresistance, quasi-2D Dirac Fermi surface and topological phase transition in ZrSiS
[35] | Onsager L 1952 Philos. Mag. 43 1006 | Interpretation of the de Haas-van Alphen effect
[36] | Lifshitz I M and Kosevich A M 1956 Sov. Phys.-JETP 2 636 |
[37] | Lifshitz I M and Kosevich A M 1958 Sov. Phys.-JETP 6 67 |
[38] | Arnold F, Shekhar C, Wu S C, Sun Y, Dos Reis R D, Kumar N, Naumann M, Ajeesh M O, Schmidt M, Grushin A G, Bardarson J H, Baenitz M, Sokolov D, Borrmann H, Nicklas M, Felser C, Hassinger E and Yan B 2016 Nat. Commun. 7 11615 | Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP
[39] | Li C H, Long Y J, Zhao L X, Shan L, Ren Z A, Zhao J Z, Weng H M, Dai X, Fang Z, Ren C and Chen G F 2017 Phys. Rev. B 95 125417 | Pressure-induced topological phase transitions and strongly anisotropic magnetoresistance in bulk black phosphorus
[40] | Wang Y Y, Sun L L, Xu S, Su Y and Xia T L 2018 Phys. Rev. B 98 045137 | Unusual magnetotransport in holmium monoantimonide
[41] | Gorbachev R V, Song J C W, Yu G L, Kretinin A V, Withers F, Cao Y, Mishchenko A, Grigorieva I V, Novoselov K S, Levitov L S and Geim A K 2014 Science 346 448 | Detecting topological currents in graphene superlattices