Processing math: 100%

Butterfly-Like Anisotropic Magnetoresistance and Angle-Dependent Berry Phase in a Type-II Weyl Semimetal WP2

Funds: Supported by the National Natural Science Foundation of China (Grant Nos. 11974324, 11804326, U1832151, and 11674296), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDC07010000), the National Key Research and Development Program of China (Grant No. 2017YFA0403600), the Anhui Initiative in Quantum Information Technologies (Grant No. AHY170000), the Hefei Science Center CAS (Grant No. 2018HSC-UE014), the Jiangsu Provincial Science Foundation for Youth (Grant No. BK20170821), the National Natural Science Foundation of China for Youth (Grant No. 11804160), and the Anhui Provincial Natural Science Foundation (Grant No. 1708085MF136).
  • Received Date: June 03, 2020
  • Published Date: August 31, 2020
  • The Weyl semimetal has emerged as a new topologically nontrivial phase of matter, hosting low-energy excitations of massless Weyl fermions. Here, we present a comprehensive study of a type-II Weyl semimetal WP2. Transport studies show a butterfly-like magnetoresistance at low temperature, reflecting the anisotropy of the electron Fermi surfaces. This four-lobed feature gradually evolves into a two-lobed variant with an increase in temperature, mainly due to the reduced relative contribution of electron Fermi surfaces compared to hole Fermi surfaces for magnetoresistance. Moreover, an angle-dependent Berry phase is also discovered, based on quantum oscillations, which is ascribed to the effective manipulation of extremal Fermi orbits by the magnetic field to feel nearby topological singularities in the momentum space. The revealed topological character and anisotropic Fermi surfaces of the WP2 substantially enrich the physical properties of Weyl semimetals, and show great promises in terms of potential topological electronic and Fermitronic device applications.
  • Article Text

  • [1]
    Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495 doi: 10.1038/nature15768

    CrossRef Google Scholar

    [2]
    Deng K, Wan G, Deng P, Zhang K, Ding S, Wang E, Yan M, Huang H, Zhang H, Xu Z, Denlinger J, Fedorov A, Yang H, Duan W, Yao H, Wu Y, Fan S, Zhang H, Chen X and Zhou S 2016 Nat. Phys. 12 1105 doi: 10.1038/nphys3871

    CrossRef Google Scholar

    [3]
    Wang Y, Liu E, Liu H, Pan Y, Zhang L, Zeng J, Fu Y, Wang M, Xu K, Huang Z, Wang Z, Lu H Z, Xing D, Wang B, Wan X and Miao F 2016 Nat. Commun. 7 13142 doi: 10.1038/ncomms13142

    CrossRef Google Scholar

    [4]
    Lv Y Y, Li X, Zhang B B, Deng W Y, Yao S H, Chen Y B, Zhou J, Zhang S T, Lu M H, Zhang L, Tian M, Sheng L and Chen Y F 2017 Phys. Rev. Lett. 118 096603 doi: 10.1103/PhysRevLett.118.096603

    CrossRef Google Scholar

    [5]
    Ma J, Gu Q, Liu Y, Lai J, Yu P, Zhuo X, Liu Z, Chen J H, Feng J and Sun D 2019 Nat. Mater. 18 476 doi: 10.1038/s41563-019-0296-5

    CrossRef Google Scholar

    [6]
    Wang Q, Zheng J, He Y, Cao J, Liu X, Wang M, Ma J, Lai J, Lu H, Jia S, Yan D, Shi Y, Duan J, Han J, Xiao W, Chen J H, Sun K, Yao Y and Sun D 2019 Nat. Commun. 10 5736 doi: 10.1038/s41467-019-13713-1

    CrossRef Google Scholar

    [7]
    Chen D, Zhao L X, He J B, Liang H, Zhang S, Li C H, Shan L, Wang S C, Ren Z A, Ren C and Chen G F 2016 Phys. Rev. B 94 174411 doi: 10.1103/PhysRevB.94.174411

    CrossRef Google Scholar

    [8]
    Frenzel A J, Homes C C, Gibson Q D, Shao Y M, Post K W, Charnukha A, Cava R J and Basov D N 2017 Phys. Rev. B 95 245140 doi: 10.1103/PhysRevB.95.245140

    CrossRef Google Scholar

    [9]
    Zhang K, Du Y, Qi Z, Cheng B, Fan X, Wei L, Li L, Wang D, Yu G, Hu S, Sun C, Huang Z, Chu J, Wan X and Zeng C 2020 Phys. Rev. Appl. 13 014058 doi: 10.1103/PhysRevApplied.13.014058

    CrossRef Google Scholar

    [10]
    Autes G, Gresch D, Troyer M, Soluyanov A A and Yazyev O V 2016 Phys. Rev. Lett. 117 066402 doi: 10.1103/PhysRevLett.117.066402

    CrossRef Google Scholar

    [11]
    Kumar N, Sun Y, Xu N, Manna K, Yao M, Suss V, Leermakers I, Young O, Forster T, Schmidt M, Borrmann H, Yan B, Zeitler U, Shi M, Felser C and Shekhar C 2017 Nat. Commun. 8 1642 doi: 10.1038/s41467-017-01758-z

    CrossRef Google Scholar

    [12]
    Razzoli E, Zwartsenberg B, Michiardi M, Boschini F, Day R P, Elfimov I S, Denlinger J D, Süss V, Felser C and Damascelli A 2018 Phys. Rev. B 97 201103R doi: 10.1103/PhysRevB.97.201103

    CrossRef Google Scholar

    [13]
    Yao M Y, Xu N, Wu Q S, Autes G, Kumar N, Strocov V N, Plumb N C, Radovic M, Yazyev O V, Felser C, Mesot J and Shi M 2019 Phys. Rev. Lett. 122 176402 doi: 10.1103/PhysRevLett.122.176402

    CrossRef Google Scholar

    [14]
    Kosevich A M 2004 Low Temp. Phys. 30 97 doi: 10.1063/1.1645161

    CrossRef Google Scholar

    [15]
    Berry M V 1984 Proc. R. Soc. London A 392 45 doi: 10.1098/rspa.1984.0023

    CrossRef Google Scholar

    [16]
    Mikitik G P and Sharlai Y V 1999 Phys. Rev. Lett. 82 2147 doi: 10.1103/PhysRevLett.82.2147

    CrossRef Google Scholar

    [17]
    Fang Z, Nagaosa N, Takahashi K S, Asamitsu A, Mathieu R, Ogasawara T, Yamada H, Kawasaki M, Tokura Y and Terakura K 2003 Science 302 92 doi: 10.1126/science.1089408

    CrossRef Google Scholar

    [18]
    Mikitik G and Sharlai Y V 2004 Phys. Rev. Lett. 93 106403 doi: 10.1103/PhysRevLett.93.106403

    CrossRef Google Scholar

    [19]
    Yao Y, Kleinman L, MacDonald A, Sinova J, Jungwirth T, Wang D S, Wang E and Niu Q 2004 Phys. Rev. Lett. 92 037204 doi: 10.1103/PhysRevLett.92.037204

    CrossRef Google Scholar

    [20]
    Murakawa H, Bahramy M S, Tokunaga M, Kohama Y, Bell C, Kaneko Y, Nagaosa N, Hwang H Y and Tokura Y 2013 Science 342 1490 doi: 10.1126/science.1242247

    CrossRef Google Scholar

    [21]
    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197 doi: 10.1038/nature04233

    CrossRef Google Scholar

    [22]
    Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201 doi: 10.1038/nature04235

    CrossRef Google Scholar

    [23]
    Sacepe B, Oostinga J B, Li J, Ubaldini A, Couto N J, Giannini E and Morpurgo A F 2011 Nat. Commun. 2 575 doi: 10.1038/ncomms1586

    CrossRef Google Scholar

    [24]
    Qu D X, Hor Y S, Xiong J, Cava R J and Ong N P 2010 Science 329 821 doi: 10.1126/science.1189792

    CrossRef Google Scholar

    [25]
    Zhao Y, Liu H, Zhang C, Wang H, Wang J, Lin Z, Xing Y, Lu H, Liu J, Wang Y, Brombosz S M, Xiao Z, Jia S, Xie X C and Wang J 2015 Phys. Rev. X 5 031037 doi: 10.1103/PhysRevX.5.031037

    CrossRef Google Scholar

    [26]
    Hu J, Liu J Y, Graf D, Radmanesh S M, Adams D J, Chuang A, Wang Y, Chiorescu I, Wei J, Spinu L and Mao Z Q 2016 Sci. Rep. 6 18674 doi: 10.1038/srep18674

    CrossRef Google Scholar

    [27]
    Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959 doi: 10.1103/RevModPhys.82.1959

    CrossRef Google Scholar

    [28]
    Mathis H, Glaum R and Gruehn R 1991 Acta Chem. Scand. 45 781 doi: 10.3891/acta.chem.scand.45-0781

    CrossRef Google Scholar

    [29]
    Rundqvist S and Lundstrom T 1963 Acta Chem. Scand. 17 37 doi: 10.3891/acta.chem.scand.17-0037

    CrossRef Google Scholar

    [30]
    Rühl R and Jeitschko W 1983 Monatsh. Chem. - Chem. Mon. 114 817 doi: 10.1007/BF00799944

    CrossRef Google Scholar

    [31]
    Schönemann R, Aryal N, Zhou Q, Chiu Y C, Chen K W, Martin T J, McCandless G T, Chan J Y, Manousakis E and Balicas L 2017 Phys. Rev. B 96 121108R doi: 10.1103/PhysRevB.96.121108

    CrossRef Google Scholar

    [32]
    Wang A, Graf D, Liu Y, Du Q, Zheng J, Lei H and Petrovic C 2017 Phys. Rev. B 96 121107R doi: 10.1103/PhysRevB.96.121107

    CrossRef Google Scholar

    [33]
    Ashcroft N and Mermin N 1976 Solid State Physics San Diego: Harcourt College Publisher

    Google Scholar

    [34]
    Ali M N, Schoop L M, Garg C, Lippmann J M, Lara E, Lotsch B and Parkin S S 2016 Sci. Adv. 2 e1601742 doi: 10.1126/sciadv.1601742

    CrossRef Google Scholar

    [35]
    Onsager L 1952 Philos. Mag. 43 1006 doi: 10.1080/14786440908521019

    CrossRef Google Scholar

    [36]
    Lifshitz I M and Kosevich A M 1956 Sov. Phys.-JETP 2 636

    Google Scholar

    [37]
    Lifshitz I M and Kosevich A M 1958 Sov. Phys.-JETP 6 67

    Google Scholar

    [38]
    Arnold F, Shekhar C, Wu S C, Sun Y, Dos Reis R D, Kumar N, Naumann M, Ajeesh M O, Schmidt M, Grushin A G, Bardarson J H, Baenitz M, Sokolov D, Borrmann H, Nicklas M, Felser C, Hassinger E and Yan B 2016 Nat. Commun. 7 11615 doi: 10.1038/ncomms11615

    CrossRef Google Scholar

    [39]
    Li C H, Long Y J, Zhao L X, Shan L, Ren Z A, Zhao J Z, Weng H M, Dai X, Fang Z, Ren C and Chen G F 2017 Phys. Rev. B 95 125417 doi: 10.1103/PhysRevB.95.125417

    CrossRef Google Scholar

    [40]
    Wang Y Y, Sun L L, Xu S, Su Y and Xia T L 2018 Phys. Rev. B 98 045137 doi: 10.1103/PhysRevB.98.045137

    CrossRef Google Scholar

    [41]
    Gorbachev R V, Song J C W, Yu G L, Kretinin A V, Withers F, Cao Y, Mishchenko A, Grigorieva I V, Novoselov K S, Levitov L S and Geim A K 2014 Science 346 448 doi: 10.1126/science.1254966

    CrossRef Google Scholar

  • Related Articles

    [1]WANG Zhi-Ping, ZHANG Feng-Shou, ZHU Yun, XIE Guan-Hao. Angle-Dependent Irradiation of C4 in Femtosecond Laser Pulses [J]. Chin. Phys. Lett., 2012, 29(7): 073101. doi: 10.1088/0256-307X/29/7/073101
    [2]R. K. Tiwari, D. Tiwari, Pratibha Shukla. LRS Bianchi Type-II Cosmological Model with a Decaying Lambda Term [J]. Chin. Phys. Lett., 2012, 29(1): 010403. doi: 10.1088/0256-307X/29/1/010403
    [3]Atul Tyagi, Keerti Sharma. Locally Rotationally Symmetric Bianchi Type-II Magnetized String Cosmological Model with Bulk Viscous Fluid in General Relativity [J]. Chin. Phys. Lett., 2011, 28(8): 089802. doi: 10.1088/0256-307X/28/8/089802
    [4]WANG Guo-Wei, XU Ying-Qiang, GUO Jie, TANG Bao, REN Zheng-Wei, HE Zhen-Hong, NIU Zhi-Chuan. Growth and Characterization of GaSb-Based Type-II InAs/GaSb Superlattice Photodiodes for Mid-Infrared Detection [J]. Chin. Phys. Lett., 2010, 27(7): 077305. doi: 10.1088/0256-307X/27/7/077305
    [5]LIU Hong-Gang, JIN Zhi, SU Yong-Bo, WANG Xian-Tai, CHANG Hu-Dong, ZHOU Lei, LIU Xin-Yu, WU De-Xin. Extrinsic Base Surface Passivation in High Speed “Type-II'” GaAsSb/InP DHBTs Using an InGaAsP Ledge Structure [J]. Chin. Phys. Lett., 2010, 27(5): 058502. doi: 10.1088/0256-307X/27/5/058502
    [6]WANG Xian-Cheng, MA Hong-An, ZANG Chuan-Yi, TIAN Yu, LI Shang-Sheng, JIA Xiao-Peng. Growth of Large High-Quality Type-II a Diamond Crystals [J]. Chin. Phys. Lett., 2005, 22(7): 1800-1802.
    [7]XU Xiao-Hua, NIU Zhi-Chuan, NI Hai-Qiao, XU Ying-Qiang, ZHANG Wei, HE Zheng-Hong, HAN Qin, WU Rong-Han. Molecular Beam Epitaxy Growth and Photoluminescence of Type-II (GaAs1-xSbx/InyGa1-yAs)/GaAs Bilayer Quantum Well [J]. Chin. Phys. Lett., 2004, 21(9): 1831-1834.
    [8]S. A. Alavi. Berry’s Phase in Noncommutative Spaces [J]. Chin. Phys. Lett., 2003, 20(5): 605-607.
    [9]LIU Quanhui, HUANG Xiangyou, QIAN Shangwu. Quantum Phase of a Moving Dipole and Berry’s Phase [J]. Chin. Phys. Lett., 1995, 12(6): 327-329.
    [10]LONG Fei, LIU Shenzhi, MEI Fei, MIAO Jingqi, LIANG Jingguo. Electronic Structure of Type-II InAs/GaSb Misaligned Superlattice [J]. Chin. Phys. Lett., 1994, 11(2): 109-112.

Catalog

    Article views (671) PDF downloads (703) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return