[1] | Ionescu A M and Riel H 2011 Nature 479 329 | Tunnel field-effect transistors as energy-efficient electronic switches
[2] | Lv Y, Qin W, Wang C, Liao L and Liu X 2019 Adv. Electron. Mater. 5 1800569 | Recent Advances in Low-Dimensional Heterojunction-Based Tunnel Field Effect Transistors
[3] | Madan J and Chaujar R 2017 IEEE Trans. Electron Devices 64 1482 | Numerical Simulation of N + Source Pocket PIN-GAA-Tunnel FET: Impact of Interface Trap Charges and Temperature
[4] | Moselund K E, Cutaia D, Schmid H, Borg M, Sant S, Schenk A and Riel H 2016 IEEE Trans. Electron Devices 63 4233 | Lateral InAs/Si p-Type Tunnel FETs Integrated on Si—Part 1: Experimental Devices
[5] | Novoselov K S 2004 Science 306 666 | Electric Field Effect in Atomically Thin Carbon Films
[6] | Baringhaus J, Ruan M, Edler F, Tejeda A, Sicot M, Taleb Ibrahimi A, Li A P, Jiang Z, Conrad E H, Berger C, Tegenkamp C and de Heer W A 2014 Nature 506 349 | Exceptional ballistic transport in epitaxial graphene nanoribbons
[7] | Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803 | Energy Gaps in Graphene Nanoribbons
[8] | Denk R, Hohage M, Zeppenfeld P, Cai J, Pignedoli C A, Sode H, Fasel R, Feng X, Mullen K, Wang S, Prezzi D, Ferretti A, Ruini A, Molinari E and Ruffieux P 2014 Nat. Commun. 5 4253 | Exciton-dominated optical response of ultra-narrow graphene nanoribbons
[9] | Pereira V M and Castro Neto A H 2009 Phys. Rev. Lett. 103 046801 | Strain Engineering of Graphene’s Electronic Structure
[10] | Liu Y, Xia C J, Zhang B Q, Zhang T T, Cui Y and Hu Z Y 2018 Chin. Phys. Lett. 35 067101 | Effect of Chemical Doping on the Electronic Transport Properties of Tailoring Graphene Nanoribbons
[11] | Jiang J, Hu W, Xie D, Yang J, He J, Gao Y and Wan Q 2019 Nanoscale 11 1360 | 2D electric-double-layer phototransistor for photoelectronic and spatiotemporal hybrid neuromorphic integration
[12] | Sahoo P K, Memaran S, Xin Y, Balicas L and Gutierrez H R 2018 Nature 553 63 | One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy
[13] | Mu C, Wei W, Li J, Huang B and Dai Y 2018 Mater. Res. Express 5 046307 | Electronic properties of two-dimensional in-plane heterostructures of WS 2 /WSe 2 /MoS 2
[14] | Liu X and Hersam M C 2018 Adv. Mater. 30 1801586 | Interface Characterization and Control of 2D Materials and Heterostructures
[15] | Liu Y, Stradins P and Wei S H 2016 Sci. Adv. 2 e1600069 | Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier
[16] | Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Mullen K and Fasel R 2010 Nature 466 470 | Atomically precise bottom-up fabrication of graphene nanoribbons
[17] | Lv Y, Huang Q, Chang S, Wang H, He J, Wei C, Liu A, Ye S and Wang W 2019 Phys. Rev. Appl. 11 024026 | Interface Coupling as a Crucial Factor for Spatial Localization of Electronic States in a Heterojunction of Graphene Nanoribbons
[18] | Liu F, Wang J and Guo H 2016 Nanoscale 8 18180 | Impact of edge states on device performance of phosphorene heterojunction tunneling field effect transistors
[19] | Liu Y, Huang Y and Duan X 2019 Nature 567 323 | Van der Waals integration before and beyond two-dimensional materials
[20] | Debbichi L, Eriksson O and Lebègue S 2014 Phys. Rev. B 89 205311 | Electronic structure of two-dimensional transition metal dichalcogenide bilayers from ab initio theory
[21] | Guo Y and Robertson J 2016 Appl. Phys. Lett. 108 233104 | Band engineering in transition metal dichalcogenides: Stacked versus lateral heterostructures
[22] | Kang J, Tongay S, Zhou J, Li J and Wu J 2013 Appl. Phys. Lett. 102 012111 | Band offsets and heterostructures of two-dimensional semiconductors
[23] | Gong C, Zhang H, Wang W, Colombo L, Wallace R M and Cho K 2013 Appl. Phys. Lett. 103 053513 | Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors
[24] | Liu Y, Guo J, Zhu E, Liao L, Lee S J, Ding M, Shakir I, Gambin V, Huang Y and Duan X 2018 Nature 557 696 | Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions
[25] | Liu Y, Weiss N O, Duan X, Cheng H C, Huang Y and Duan X 2016 Nat. Rev. Mater. 1 16042 | Van der Waals heterostructures and devices
[26] | Sarkar D, Xie X, Liu W, Cao W, Kang J, Gong Y, Kraemer S, Ajayan P M and Banerjee K 2015 Nature 526 91 | A subthermionic tunnel field-effect transistor with an atomically thin channel
[27] | Burg G W, Prasad N, Fallahazad B, Valsaraj A, Kim K, Taniguchi T, Watanabe K, Wang Q, Kim M J, Register L F and Tutuc E 2017 Nano Lett. 17 3919 | Coherent Interlayer Tunneling and Negative Differential Resistance with High Current Density in Double Bilayer Graphene–WSe 2 Heterostructures
[28] | Shim J, Oh S, Kang D H, Jo S H, Ali M H, Choi W Y, Heo K, Jeon J, Lee S, Kim M, Song Y J and Park J H 2016 Nat. Commun. 7 13413 | Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic
[29] | Shim J, Kim H S, Shim Y S, Kang D H, Park H Y, Lee J, Jeon J, Jung S J, Song Y J, Jung W S, Lee J, Park S, Kim J, Lee S, Kim Y H and Park J H 2016 Adv. Mater. 28 5293 | Extremely Large Gate Modulation in Vertical Graphene/WSe 2 Heterojunction Barristor Based on a Novel Transport Mechanism
[30] | Zhang J, Wei Y, Yao F, Li D, Ma H, Lei P, Fang H, Xiao X, Lu Z, Yang J, Li J, Jiao L, Hu W, Liu K, Liu K, Liu P, Li Q, Lu W, Fan S and Jiang K 2017 Adv. Mater. 29 1604469 | SWCNT-MoS 2 -SWCNT Vertical Point Heterostructures
[31] | Qiu C, Liu F, Xu L, Deng B, Xiao M, Si J, Lin L, Zhang Z, Wang J, Guo H, Peng H and Peng L M 2018 Science 361 387 | Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches
[32] | Giannozzi P, Andreussi O, Brumme T, Bunau O, Buongiorno Nardelli M, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, Dal Corso A, de Gironcoli S, Delugas P, DiStasio R A, Ferretti A, Floris A, Fratesi G, Fugallo G, Gebauer R, Gerstmann U, Giustino F, Gorni T, Jia J, Kawamura M, Ko H Y, Kokalj A, Küçükbenli E, Lazzeri M, Marsili M, Marzari N, Mauri F, Nguyen N L, Nguyen H V, Otero de la Roza A, Paulatto L, Poncé S, Rocca D, Sabatini R, Santra B, Schlipf M, Seitsonen A P, Smogunov A, Timrov I, Thonhauser T, Umari P, Vast N, Wu X and Baroni S 2017 J. Phys.: Condens. Matter 29 465901 | Advanced capabilities for materials modelling with Quantum ESPRESSO
[33] | Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502 | QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
[34] | Conte F, Ninno D and Cantele G 2019 Phys. Rev. B 99 155429 | Electronic properties and interlayer coupling of twisted heterobilayers
[35] | Lv Y, Tong Q, Liu Y, Li L, Chang S, Zhu W, Jiang C and Liao L 2019 Phys. Rev. Appl. 12 044064 | Band-Offset Degradation in van der Waals Heterojunctions
[36] | Yang L L, Shi J J, Zhang M, Wei Z M, Ding Y M, Wu M, He Y, Cen Y L, Guo W H, Pan S H and Zhu Y H 2019 Chin. Phys. Lett. 36 097301 | The 2D InSe/WS 2 Heterostructure with Enhanced Optoelectronic Performance in the Visible Region
[37] | Zeng J, Cui P and Zhang Z 2017 Phys. Rev. Lett. 118 46101 | Half Layer By Half Layer Growth of a Blue Phosphorene Monolayer on a GaN(001) Substrate
[38] | Lv Y Z, Zhao P and Liu D S 2017 Chin. Phys. Lett. 34 107301 | Spin Caloritronic Transport of (2×1) Reconstructed Zigzag MoS 2 Nanoribbons
[39] | Shi J, Gao Y, Wang X L and Yun S N 2017 Chin. Phys. Lett. 34 087701 | Electronic, Elastic and Piezoelectric Properties of Two-Dimensional Group-IV Buckled Monolayers
[40] | Yu W, Zhu Z, Zhang S, Cai X, Wang X, Niu C Y and Zhang W B 2016 Appl. Phys. Lett. 109 103104 | Tunable electronic properties of GeSe/phosphorene heterostructure from first-principles study
[41] | Su J, Feng L, Zhang Y and Liu Z 2017 Appl. Phys. Lett. 110 161604 | Defect induced gap states in monolayer MoS 2 control the Schottky barriers of Pt-mMoS 2 interfaces
[42] | Komsa H P and Krasheninnikov A V 2013 Phys. Rev. B 88 085318 | Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles
[43] | Su J, Feng L, Zhang Y and Liu Z 2016 Phys. Chem. Chem. Phys. 18 16882 | The modulation of Schottky barriers of metal–MoS 2 contacts via BN–MoS 2 heterostructures
[44] | Zhou K, Zhang T, Liu B and Yao Y J 2020 Chin. Phys. Lett. 37 017102 | Electronic Structures and Thermoelectric Properties of ZnSb Doped with Cd and In from First Principles Calculations
[45] | Özçelik V O, Azadani J G, Yang C, Koester S J and Low T 2016 Phys. Rev. B 94 035125 | Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching
[46] | Lv Y, Liu Y, Qin W, Chang S, Jiang C, Liu Y and Liao L 2019 IEEE Trans. Electron Devices 66 2365 | Prediction of Stable and High-Performance Charge Transport in Zigzag Tellurene Nanoribbons
[47] | Tong Q, Chen M and Yao W 2019 Phys. Rev. Appl. 12 024031 | Magnetic Proximity Effect in a van der Waals Moiré Superlattice
[48] | Yu W J, Vu Q A, Oh H, Nam H G, Zhou H, Cha S, Kim J Y, Carvalho A, Jeong M, Choi H, Castro Neto A H, Lee Y H and Duan X 2016 Nat. Commun. 7 13278 | Unusually efficient photocurrent extraction in monolayer van der Waals heterostructure by tunnelling through discretized barriers
[49] | Tong Q, Yu H, Zhu Q, Wang Y, Xu X and Yao W 2017 Nat. Phys. 13 356 | Topological mosaics in moiré superlattices of van der Waals heterobilayers