[1] | Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802 | Coupled Spin and Valley Physics in Monolayers of and Other Group-VI Dichalcogenides
[2] | Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805 | Atomically Thin : A New Direct-Gap Semiconductor
[3] | Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271 | Emerging Photoluminescence in Monolayer MoS 2
[4] | Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H and Eda G 2013 ACS Nano 7 791 | Evolution of Electronic Structure in Atomically Thin Sheets of WS 2 and WSe 2
[5] | Allain A and Kis A 2014 ACS Nano 8 7180 | Electron and Hole Mobilities in Single-Layer WSe 2
[6] | Srivastava A, Sidler M, Allain A V, Lembke D S, Kis A and Imamoglu A 2015 Nat. Phys. 11 141 | Valley Zeeman effect in elementary optical excitations of monolayer WSe2
[7] | Wang G, Bouet L, Glazov M M, Amand T, Ivchenko E L, Palleau E, Marie X and Urbaszek B 2015 2D Mater. 2 034002 | Magneto-optics in transition metal diselenide monolayers
[8] | Förste J, Tepliakov N V, Kruchinin S Y, Lindlau J, Funk V, Förg M, Watanabe K, Taniguchi T, Baimuratov A S and Högele A 2020 arXiv:2002.11646 [cond-mat.mes-hall] | Exciton g-factors in monolayer and bilayer WSe$_2$ from experiment and theory
[9] | Rybkovskiy D V, Gerber I C and Durnev M V 2017 Phys. Rev. B 95 155406 | Atomically inspired approach and valley Zeeman effect in transition metal dichalcogenide monolayers
[10] | Wu Y J, Shen C, Tan Q H, Zhang J, Tan P H and Zheng H Z 2018 Acta Phys. Sin. 67 147801 (in Chinese) | Temperature dependent excitonic transition energies and linewidths of monolayer MoS2 probed by magnetic circular dichroism spectroscopy
[11] | Koperski M, Molas M R, Arora A, Nogajewski K, Slobodeniuk A O, Faugeras C and Potemski M 2017 Nanophotonics 6 1289 | Optical properties of atomically thin transition metal dichalcogenides: observations and puzzles
[12] | Liu G B, Shan W Y, Yao Y, Yao W and Xiao D 2013 Phys. Rev. B 88 085433 | Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides
[13] | Molas M R, Faugeras C, Slobodeniuk A O, Nogajewski K, Bartos M, Basko D M and Potemski M 2017 2D Mater. 4 021003 | Brightening of dark excitons in monolayers of semiconducting transition metal dichalcogenides
[14] | Zhang X X, Cao T, Lu Z G, Lin Y C, Zhang F, Wang Y, Li Z, Hone J C, Robinson J A, Smirnov D, Louie S G and Heinz T F 2017 Nat. Nanotechnol. 12 883 | Magnetic brightening and control of dark excitons in monolayer WSe2
[15] | $Q$ and $\varLambda$ points in the Brillouin zone have common $x$, $y$ but different $z$. For monolayer 2D materials, $Q$ and $\varLambda$ can be treated as the same |
[16] | Lindlau J, Robert C, Funk V, Förste J, Förg M, Colombier L, Neumann A, Courtade E, Shree S, Taniguchi T, Watanabe K, Glazov M M, Marie X, Urbaszek B and Högele A 2017 arXiv:1710.00988 [cond-mat.mes-hall] | Identifying optical signatures of momentum-dark excitons in transition metal dichalcogenide monolayers
[17] | Desai S B, Seol G, Kang J S, Fang H, Battaglia C, Kapadia R, Ager J W, Guo J and Javey A 2014 Nano Lett. 14 4592 | Strain-Induced Indirect to Direct Bandgap Transition in Multilayer WSe 2
[18] | Wang Y, Cong C, Yang W, Shang J, Peimyoo N, Chen Y, Kang J, Wang J, Huang W and Yu T 2015 Nano Res. 8 2562 | Strain-induced direct–indirect bandgap transition and phonon modulation in monolayer WS2
[19] | Wickramaratne D, Zahid F and Lake R K 2014 J. Chem. Phys. 140 124710 | Electronic and thermoelectric properties of few-layer transition metal dichalcogenides
[20] | Plechinger G, Nagler P, Kraus J, Paradiso N, Strunk C, Schüller C and Korn T 2015 Phys. Status Solidi RRL 9 457 | Identification of excitons, trions and biexcitons in single-layer WS 2
[21] | Chernikov A, van der Zande A M, Hill H M, Rigosi A F, Velauthapillai A, Hone J and Heinz T F 2015 Phys. Rev. Lett. 115 126802 | Electrical Tuning of Exciton Binding Energies in Monolayer
[22] | Zhu B, Chen X and Cui X 2015 Sci. Rep. 5 9218 | Exciton Binding Energy of Monolayer WS2
[23] | Barbone M, Montblanch A R P, Kara D M, Palacios-Berraquero C, Cadore A R, De Fazio D, Pingault B, Mostaani E, Li H, Chen B, Watanabe K, Taniguchi T, Tongay S, Wang G, Ferrari A C and Atatüre M 2018 Nat. Commun. 9 3721 | Large-scale forward genetics screening identifies Trpa1 as a chemosensor for predator odor-evoked innate fear behaviors
[24] | Qu F, Braganca H, Vasconcelos R, Liu F, Xie S J and Zeng H 2019 2D Mater. 6 045014 | Controlling valley splitting and polarization of dark- and bi-excitons in monolayer WS 2 by a tilted magnetic field
[25] | Cao S, Tang J, Sun Y, Peng K, Gao Y, Zhao Y, Qian C, Sun S, Ali H, Shao Y, Wu S, Song F, Williams D A, Sheng W, Jin K and Xu X 2016 Nano Res. 9 306 | Observation of coupling between zero- and two-dimensional semiconductor systems based on anomalous diamagnetic effects
[26] | Chen X, Xing J, Zhu L, Zha F X, Niu Z, Guo S and Shao J 2016 J. Appl. Phys. 119 175301 | GaInSb/InAs/AlSb quantum wells with InSb- and GaAs-like interfaces investigated by temperature- and magnetic field-dependent photoluminescence
[27] | Tang J and Xu X L 2018 Chin. Phys. B 27 027804 | Magneto optical properties of self-assembled InAs quantum dots for quantum information processing
[28] | Hou H Q, Staguhn W, Takeyama S, Miura N, Segawa Y, Aoyagi Y and Namba S 1991 Phys. Rev. B 43 4152 | Diamagnetic shift in As/GaAs strained quantum wells
[29] | Kim S, Fisher B, Eisler H J and Bawendi M 2003 J. Am. Chem. Soc. 125 11466 | Type-II Quantum Dots: CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell) Heterostructures
[30] | Kamimura H 1986 Solid State Commun. 59 405 | Wannier exciton in microcrystals
[31] | Li Y, Chernikov A, Zhang X, Rigosi A, Hill H M, van der Zande A M, Chenet D A, Shih E M, Hone J and Heinz T F 2014 Phys. Rev. B 90 205422 | Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: , , , and
[32] | Carvalho B R, Wang Y, Mignuzzi S, Roy D, Terrones M, Fantini C, Crespi V H, Malard L M and Pimenta M A 2017 Nat. Commun. 8 1 | In situ click chemistry generation of cyclooxygenase-2 inhibitors
[33] | Koperski M, Molas M R, Arora A, Nogajewski K, Bartos M, Wyzula J, Vaclavkova D, Kossacki P and Potemski M 2018 2D Mater. 6 015001 | Orbital, spin and valley contributions to Zeeman splitting of excitonic resonances in MoSe 2 , WSe 2 and WS 2 Monolayers
[34] | Dang J, Sun S, Xie X, Yu Y, Peng K, Qian C, Wu S, Song F, Yang J, Xiao S, Yang L, Wang Y W, Rafiq M A, Wang C and Xu X 2020 npj 2D Mater. Appl. 4 2 | Identifying defect-related quantum emitters in monolayer WSe2
[35] | Yao W, Xiao D and Niu Q 2008 Phys. Rev. B 77 235406 | Valley-dependent optoelectronics from inversion symmetry breaking
[36] | MacNeill D, Heikes C, Mak K F, Anderson Z, Kormanyos A, Zolyomi V, Park J and Ralph D C 2015 Phys. Rev. Lett. 114 037401 | Breaking of Valley Degeneracy by Magnetic Field in Monolayer
[37] | Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B and Feng J 2012 Nat. Commun. 3 887 | Valley-selective circular dichroism of monolayer molybdenum disulphide
[38] | Nagler P, Ballottin M V, Mitioglu A A, Mooshammer F, Paradiso N, Strunk C, Huber R, Chernikov A, Christianen P C M, Schüller C and Korn T 2017 Nat. Commun. 8 1551 ISSN 2041 | Phenotypic plasticity promotes recombination and gene clustering in periodic environments
[39] | Stier A V, McCreary K M, Jonker B T, Kono J and Crooker S A 2016 Nat. Commun. 7 10643 | Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 Tesla
[40] | Plechinger G, Nagler P, Arora A, Granados del Águila A, Ballottin M V, Frank T, Steinleitner P, Gmitra M, Fabian J, Christianen P C M, Bratschitsch R, Schüller C and Korn T 2016 Nano Lett. 16 7899 | Excitonic Valley Effects in Monolayer WS 2 under High Magnetic Fields
[41] | Lyons T, Dufferwiel S, Brooks M, Withers F, Taniguchi T, Watanabe K, Novoselov K, Burkard G and Tartakovskii A 2019 Nat. Commun. 10 2330 | The valley Zeeman effect in inter- and intra-valley trions in monolayer WSe2
[42] | Blöchl P E 1994 Phys. Rev. B 50 17953 | Projector augmented-wave method
[43] | Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G and Persson K A 2013 APL Mater. 1 011002 | Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
[44] | Sun S, Yu Y, Dang J, Peng K, Xie X, Song F, Qian C, Wu S, Ali H, Tang J, Yang J, Xiao S, Tian S, Wang M, Shan X, Rafiq M A, Wang C and Xu X 2019 Appl. Phys. Lett. 114 113104 | Large g factor in bilayer WS 2 flakes
[45] | He Y M, Clark G, Schaibley J R, He Y, Chen M C, Wei Y J, Ding X, Zhang Q, Yao W, Xu X, Lu C Y and Pan J W 2015 Nat. Nanotechnol. 10 497 | Single quantum emitters in monolayer semiconductors
[46] | Srivastava A, Sidler M, Allain A V, Lembke D S, Kis A and Imamoglu A 2015 Nat. Nanotechnol. 10 491 | Optically active quantum dots in monolayer WSe2