[1] | Stewart S G R 1984 Rev. Mod. Phys. 56 755 | Heavy-fermion systems
[2] | Ohashi T, Kawakami N and Tsunetsugu H 2006 Phys. Rev. Lett. 97 066401 | Mott Transition in Kagomé Lattice Hubbard Model
[3] | Feng Y et al. 2014 Chin. Phys. Lett. 31 127303 | Observation of a Flat Band in Silicene
[4] | Udagawa M and Motome Y 2010 Phys. Rev. Lett. 104 106409 | Chirality-Driven Mass Enhancement in the Kagome Hubbard Model
[5] | Wang B et al. 2013 Chin. Phys. B 22 010501 | Effects of non-Gaussian noise on a calcium oscillation system
[6] | Han K et al. 2014 Chin. Phys. B 23 117702 | Analysis of flatband voltage shift of metal/high- k /SiO 2 /Si stack based on energy band alignment of entire gate stack
[7] | Wang C L et al. 2017 Chin. Phys. Lett. 34 097305 | Evidence of Electron-Hole Imbalance in WTe 2 from High-Resolution Angle-Resolved Photoemission Spectroscopy
[8] | Lu J L et al. 2017 Chin. Phys. Lett. 34 057302 | Two-Dimensional Node-Line Semimetals in a Honeycomb-Kagome Lattice *
[9] | Song L et al. 2019 Chin. Phys. B 28 037101 | Graphene-like Be 3 X 2 ( X = C, Si, Ge, Sn): A new family of two-dimensional topological insulators
[10] | Dai J et al. 2015 Chin. Phys. Lett. 32 127503 | Nuclear-Magnetic-Resonance Properties of the Staircase Kagomé Antiferromagnet PbCu 3 TeO 7
[11] | Pollmann F, Fulde P and Shtengel K 2008 Phys. Rev. Lett. 100 136404 | Kinetic Ferromagnetism on a Kagome Lattice
[12] | Ross K A, Ruff J P C, Adams C P et al. 2009 Phys. Rev. Lett. 103 227202 | Two-Dimensional Kagome Correlations and Field Induced Order in the Ferromagnetic Pyrochlore
[13] | Tang E and Fu L 2014 Nat. Phys. 10 964 | Strain-induced partially flat band, helical snake states and interface superconductivity in topological crystalline insulators
[14] | Yu S L and Li J X 2012 Phys. Rev. B 85 144402 | Chiral superconducting phase and chiral spin-density-wave phase in a Hubbard model on the kagome lattice
[15] | Liu Z, Li Y and Yang Y 2019 Chin. Phys. B 28 077103 | Possible nodeless s ± -wave superconductivity in twisted bilayer graphene
[16] | Ko W H, Lee P A and Wen X G 2009 Phys. Rev. B 79 214502 | Doped kagome system as exotic superconductor
[17] | Yi, Hangmo and Fertig H A 1998 Phys. Rev. B 58 4019 | Laughlin-Jastrow-correlated Wigner crystal in a strong magnetic field
[18] | Liu W et al. 2018 Chin. Phys. Lett. 35 117501 | Rare-Earth Chalcogenides: A Large Family of Triangular Lattice Spin Liquid Candidates
[19] | Han T H et al. 2012 Nature 492 406 | Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet
[20] | Gong S S, Zhu W and Sheng D N 2015 Sci. Rep. 4 6317 | Emergent Chiral Spin Liquid: Fractional Quantum Hall Effect in a Kagome Heisenberg Model
[21] | Zhou M et al. 2014 Phys. Rev. Lett. 113 236802 | Graphene: Kagome Band in a Hexagonal Lattice
[22] | Maruyama M, Cuong N T and Okada S 2016 Carbon 109 755 | Coexistence of Dirac cones and Kagome flat bands in a porous graphene
[23] | Zhu W, Gong S S and Sheng D N 2016 Phys. Rev. B 94 035129 | Interaction-driven fractional quantum Hall state of hard-core bosons on kagome lattice at one-third filling
[24] | Lin Z et al. 2018 Phys. Rev. Lett. 121 096401 | Flatbands and Emergent Ferromagnetic Ordering in Kagome Lattices
[25] | Fenner L A, Dee A A and Wills A S 2009 J. Phys.: Condens. Matter 21 452202 | Non-collinearity and spin frustration in the itinerant kagome ferromagnet Fe 3 Sn 2
[26] | Yan W et al. 2018 Solid State Commun. 281 57 | Critical behavior of half-metallic ferromagnet Co 3 Sn 2 S 2
[27] | Ohmori H et al. 1987 J. Magn. Magn. Mater. 70 249 | Spin structure and weak ferromagnetism of Mn3Sn
[28] | Kuroda K et al. 2017 Nat. Mater. 16 1090 | Evidence for magnetic Weyl fermions in a correlated metal
[29] | Nayak A K et al. 2016 Sci. Adv. 2 e1501870 | Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn 3 Ge
[30] | Yang H et al. 2017 New J. Phys. 19 015008 | Topological Weyl semimetals in the chiral antiferromagnetic materials Mn 3 Ge and Mn 3 Sn
[31] | Liu E et al. 2018 Nat. Phys. 14 1125 | Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal
[32] | Yang H et al. 2020 Phys. Rev. Mater. 4 024202 | Giant anomalous Nernst effect in the magnetic Weyl semimetal
[33] | Ye L et al. 2018 Nature 555 638 | Massive Dirac fermions in a ferromagnetic kagome metal
[34] | Yang T Y et al. arXiv:1906.07140 [cond-mat.mtrl-sci] | Evidence of orbit-selective electronic kagome lattice with planar flat-band in correlated paramagnetic YCr6Ge6
[35] | Avila M A 2005 J. Phys.: Condens. Matter 17 6969 | Direct observation of Fe spin reorientation in single-crystalline YbFe 6 Ge 6
[36] | Blaha P et al. 2001 WIEN2K, An augmented plane wave plus local orbitals program for calculating crystal properties |
[37] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | Generalized Gradient Approximation Made Simple
[38] | Brabers J H V J, Buschow K H J and de Boer F R 1994 J. Alloys Compd. 205 77 | Magnetic properties of RCr6Ge6 compounds
[39] | Ishii Y et al. 2013 J. Phys. Soc. Jpn. 82 023705 | YCr 6 Ge 6 as a Candidate Compound for a Kagome Metal
[40] | Liu C et al. 2009 Phys. Rev. Lett. 102 167004 | Three- to Two-Dimensional Transition of the Electronic Structure in : A Parent Compound for an Iron Arsenic High-Temperature Superconductor
[41] | Avigo I et al. 2017 Phys. Status Solidi 254 1600382 | Electronic structure and ultrafast dynamics of FeAs-based superconductors by angle- and time-resolved photoemission spectroscopy
[42] | Bolens A, Nagaosa N 2019 Phys. Rev. B 99 165141 | Topological states on the breathing kagome lattice