Company | Grade | Rockwell | Vickers | Transverse rupture |
---|---|---|---|---|
hardness (HRA) | hardness (HV) | strength (GPa) | ||
Heyuan | ZK01F | 93.5 | 1900 | $\ge$ 1.9 |
ZK10F | 93.0 | 1800 | $\ge$ 2.2 | |
ZK20F | 92.5 | 1700 | $\ge$ 2.6 | |
Fuji | TJS01 | 98.0 | 2700 | 2.6 |
TF05 | 95.0 | 2400 | 1.5 | |
F09 | 93.0 | 1800 | 4.4 | |
Hawedia | HA-6%Co | 93.0 | 1770 |
[1] | Kawai N and Rev S 1970 Rev. Sci. Instrum. 41 1178 | The Generation of Ultrahigh Hydrostatic Pressures by a Split Sphere Apparatus
[2] | Yuan Z et al. 2017 Chin. Phys. Lett. 34 040701 | Wide-Temperature-Range Dielectric Permittivity Measurement under High Pressure
[3] | Irifune T et al. 2003 Nature 421 599 | Ultrahard polycrystalline diamond from graphite
[4] | Fang S et al. 2019 Chin. Phys. B 28 098101 | Characteristics of urea under high pressure and high temperature
[5] | Cui Q et al. 2016 Phys. Rev. Lett. 117 176603 | Slater Insulator in Iridate Perovskites with Strong Spin-Orbit Coupling
[6] | Huang Q et al. 2014 Nature 510 250 | Nanotwinned diamond with unprecedented hardness and stability
[7] | Walker D, Carpenter M A and Hitch C M 1990 Am. Mineral. 75 1020 |
[8] | Keppler H and Frost D 2005 Mineral Behaviour at Extreme Conditions (Budapest: Eötvös University Press) p 1 |
[9] | Irifune T et al. 1992 High Pressure Research: Application to Earth and Planetary Sciences (Tokyo/AGU, Washington, DC: Terrapub) p 43 |
[10] | Irifune T, Isobe F and Shinmei T 2014 Phys. Earth Planet. Inter. 228 255 | A novel large-volume Kawai-type apparatus and its application to the synthesis of sintered bodies of nano-polycrystalline diamond
[11] | Ito E and Rev A 2002 Rev. High Press. Sci. Technol. 12 104 | Frontier of High-Pressure Earth Science. Sintered Diamond and Research of the Earth's Interior.
[12] | Tange Y, Irifune T and Fnakoshi K 2008 High Press. Res. 28 245 | Pressure generation to 80 GPa using multianvil apparatus with sintered diamond anvils
[13] | Tange Y et al. 2012 J. Geophys. Res. 117 B06201 | P - V - T equation of state of MgSiO 3 perovskite based on the MgO pressure scale: A comprehensive reference for mineralogy of the lower mantle
[14] | Yamazaki D et al. 2014 Phys. Earth Planet. Inter. 228 262 | Over 1Mbar generation in the Kawai-type multianvil apparatus and its application to compression of (Mg0.92Fe0.08)SiO3 perovskite and stishovite
[15] | Liu Z D et al. 2016 Phys. Earth Planet. Inter. 257 18 | Phase relations in the system MgSiO 3 –Al 2 O 3 up to 52 GPa and 2000 K
[16] | Liu Z D et al. 2017 J. Geophys. Res.: Solid Earth 122 7775 | Phase Relations in the System MgSiO 3 -Al 2 O 3 up to 2300 K at Lower Mantle Pressures
[17] | Ishii T et al. 2016 Rev. Sci. Instrum. 87 024501 | Generation of pressures over 40 GPa using Kawai-type multi-anvil press with tungsten carbide anvils
[18] | Ishii T et al. 2017 High Press. Res. 37 507 | Pressure generation to 65 GPa in a Kawai-type multi-anvil apparatus with tungsten carbide anvils
[19] | Kunimoto T et al. 2016 High Press. Res. 36 1 | Pressure-induced phase transformations of PbCO 3 by X-ray diffraction and Raman spectroscopy
[20] | Ito E 1977 Geophys. Res. Lett. 4 72 | The absence of oxide mixture in high-pressure phases of Mg-silicates
[21] | Liu Z D, Ishii T and Katsura T 2017 Geochem. Perspect. Lett. 5 12 | Rapid decrease of MgAlO2.5 component in bridgmanite with pressure
[22] | Kumazawa M 1973 High Temp.-High Press. 5 599 |
[23] | Zhai S, Ito E and Yoneda A 2008 High Press. Res. 28 265 | Effects of pre-heated pyrophyllite gaskets on high-pressure generation in the Kawai-type multi-anvil experiments
[24] | Yoneda A et al. 1984 High Temp.-High Press. 16 637 |
[25] | Hiroshi K and Yingwei F 2002 Geochim. Cosmochim. Acta 66 2099 | Subsolidus and melting phase relations of basaltic composition in the uppermostlower mantle