[1] | Gornyi I V, Mirlin A D and Polyakov D G 2005 Phys. Rev. Lett. 95 206603 | Interacting Electrons in Disordered Wires: Anderson Localization and Low- Transport
| Gornyi I V, Mirlin A D and Polyakov D G 2005 Phys. Rev. Lett. 95 046404 | Dephasing and Weak Localization in Disordered Luttinger Liquid
[2] | Basko D M, Aleiner I L and Altshuler B L 2006 Ann. Phys. 321 1126 | Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states
[3] | Bardarson J H, Pollmann F and Moore J E 2012 Phys. Rev. Lett. 109 017202 | Unbounded Growth of Entanglement in Models of Many-Body Localization
[4] | Kjall J A, Bardarson J H and Pollmann F 2014 Phys. Rev. Lett. 113 107204 | Many-Body Localization in a Disordered Quantum Ising Chain
[5] | Geraedts S D, Nandkishore R and Regnault N 2016 Phys. Rev. B 93 174202 | Many-body localization and thermalization: Insights from the entanglement spectrum
[6] | Geraedts S D, Regnault N and Nandkishore R M 2017 New J. Phys. 19 113021 | Characterizing the many-body localization transition using the entanglement spectrum
[7] | Yu X, Luitz D J and Clark B K 2016 Phys. Rev. B 94 184202 | Bimodal entanglement entropy distribution in the many-body localization transition
[8] | Yang Z C, Chamon C, Hamma A and Mucciolo E R 2015 Phys. Rev. Lett. 115 267206 | Two-Component Structure in the Entanglement Spectrum of Highly Excited States
[9] | Serbyn M, Michailidis A A, Abanin M A and Papic Z 2016 Phys. Rev. Lett. 117 160601 | Power-Law Entanglement Spectrum in Many-Body Localized Phases
[10] | Gray J, Bose S and Bayat A 2018 Phys. Rev. B 97 201105 | Many-body localization transition: Schmidt gap, entanglement length, and scaling
[11] | Li X, Ganeshan S, Pixley J H and Das Sarma S 2015 Phys. Rev. Lett. 115 186601 | Many-Body Localization and Quantum Nonergodicity in a Model with a Single-Particle Mobility Edge
[12] | Serbyn M, Papic Z and Abanin D A 2015 Phys. Rev. X 5 041047 | Criterion for Many-Body Localization-Delocalization Phase Transition
[13] | Doggen E V H, Schindler F, Tikhonov K S, Mirlin A D, Neupert T, Polyakov D G and Gornyi I V 2018 Phys. Rev. B 98 174202 | Many-body localization and delocalization in large quantum chains
[14] | Goodfellow I, Bengio Y and Courville A 2016 Deep Learning (Cambridge: MIT Press) |
[15] | Tanaka A and Tomiya A 2017 J. Phys. Soc. Jpn. 86 063001 | Detection of Phase Transition via Convolutional Neural Networks
[16] | Carrasquilla J and Melko R G 2017 Nat. Phys. 13 431 | Machine learning phases of matter
[17] | Torlai G and Melko R G 2016 Phys. Rev. B 94 165134 | Learning thermodynamics with Boltzmann machines
[18] | Zhang Y and Kim E A 2017 Phys. Rev. Lett. 118 216401 | Quantum Loop Topography for Machine Learning
[19] | Zhang Y, Melko R G and Kim E A 2017 Phys. Rev. B 96 245119 | Machine learning quantum spin liquids with quasiparticle statistics
[20] | Wang L 2016 Phys. Rev. B 94 195105 | Discovering phase transitions with unsupervised learning
[21] | Ch'ng K, Carrasquilla J, Melko R G and Khatami E 2017 Phys. Rev. X 7 031038 | Machine Learning Phases of Strongly Correlated Fermions
[22] | Morningstar A and Melko R G 2018 J. Mach. Learn. Res. 18 5975 |
[23] | Ponte P and Melko R G 2017 Phys. Rev. B 96 205146 | Kernel methods for interpretable machine learning of order parameters
[24] | Li C D, Tan D R and Jiang F J 2018 Ann. Phys. 391 312 | Applications of neural networks to the studies of phase transitions of two-dimensional Potts models
[25] | Ohtsuki T and Ohtsuki T 2016 J. Phys. Soc. Jpn. 85 123706 | Deep Learning the Quantum Phase Transitions in Random Two-Dimensional Electron Systems
| Ohtsuki T and Ohtsuki T 2017 J. Phys. Soc. Jpn. 86 044708 | Deep Learning the Quantum Phase Transitions in Random Electron Systems: Applications to Three Dimensions
[26] | Hu W, Singh R R P and Scalettar R T 2017 Phys. Rev. E 95 062122 | Discovering phases, phase transitions, and crossovers through unsupervised machine learning: A critical examination
[27] | Liu Y H and van Nieuwenburg E P L 2018 Phys. Rev. Lett. 120 176401 | Discriminative Cooperative Networks for Detecting Phase Transitions
[28] | Rao W J, Li Z, Zhu Q, Luo M and Wan X 2018 Phys. Rev. B 97 094207 | Identifying product order with restricted Boltzmann machines
[29] | Li Z, Luo M and Wan X 2019 Phys. Rev. B 99 075418 | Extracting critical exponents by finite-size scaling with convolutional neural networks
[30] | Khatami E, Guardado-Sanchez E, Spar B M, Carrasquilla J F, Bakr W S and Scalettar R T 2020 arXiv:2002.12310 [cond-mat.str-el] | Visualizing Correlations in the 2D Fermi-Hubbard Model with AI
[31] | Liu J, Qi Y, Meng Z Y and Fu L 2017 Phys. Rev. B 95 041101 | Self-learning Monte Carlo method
[32] | Liu J, Shen H, Qi Y, Meng Z Y and Fu L 2017 Phys. Rev. B 95 241104 | Self-learning Monte Carlo method and cumulative update in fermion systems
[33] | Xu X Y, Qi Y, Liu J, Fu L and Meng Z Y 2017 Phys. Rev. B 96 041119(R) | Self-learning quantum Monte Carlo method in interacting fermion systems
[34] | van Nieuwenburg E P L, Liu Y H and Huber S D 2017 Nat. Phys. 13 435 | Learning phase transitions by confusion
[35] | van Nieuwenburg E, Bairey E and Refael G 2018 Phys. Rev. B 98 060301 | Learning phase transitions from dynamics
[36] | Schindler F, Regnault N and Neupert T 2017 Phys. Rev. B 95 245134 | Probing many-body localization with neural networks
[37] | Venderley J, Khemani V and Kim E A 2018 Phys. Rev. Lett. 120 257204 | Machine Learning Out-of-Equilibrium Phases of Matter
[38] | Li H and Haldane F D M 2008 Phys. Rev. Lett. 101 010504 | Entanglement Spectrum as a Generalization of Entanglement Entropy: Identification of Topological Order in Non-Abelian Fractional Quantum Hall Effect States
[39] | Wigner E P 1951 Ann. Phys. (N.Y.) 53 36 | On a Class of Analytic Functions from the Quantum Theory of Collisions
| Wigner E P 1955 Ann. Phys. (N.Y.) 62 548 | Characteristic Vectors of Bordered Matrices With Infinite Dimensions
| Wigner E P 1958 Ann. Phys. (N.Y.) 67 325 | On the Distribution of the Roots of Certain Symmetric Matrices
[40] | Dyson F J 1962 J. Math. Phys. 3 140 | Statistical Theory of the Energy Levels of Complex Systems. I
[41] | Pal A and Huse D A 2010 Phys. Rev. B 82 174411 | Many-body localization phase transition
[42] | Johri S, Nandkishore R and Bhatt R N 2015 Phys. Rev. Lett. 114 117401 | Many-Body Localization in Imperfectly Isolated Quantum Systems
[43] | Luitz D J, Laflorencie N and Alet F 2015 Phys. Rev. B 91 081103(R) | Many-body localization edge in the random-field Heisenberg chain
[44] | Regnault N and Nandkishore R 2016 Phys. Rev. B 93 104203 | Floquet thermalization: Symmetries and random matrix ensembles
[45] | Rao W J 2018 J. Phys.: Condens. Matter 30 395902 | Machine learning the many-body localization transition in random spin systems
[46] | Haake F 2001 Quantum Signatures of Chaos (Berlin: Springer) |
[47] | Kudo K and Deguchi T 2004 Phys. Rev. B 69 132404 | Level statistics of spin chains with a random magnetic field
[48] | Gomez J M G, Molina R A, Relano A and Retamosa J 2002 Phys. Rev. E 66 036209 | Misleading signatures of quantum chaos
[49] | Avishai Y, Richert J and Berkovits R 2002 Phys. Rev. B 66 052416 | Level statistics in a Heisenberg chain with random magnetic field
[50] | Kausar R, Rao W J and Wan X 2020 arXiv:2005.00721 [cond-mat.dis-nn] | Learning What a Machine Learns in a Many-Body Localization Transition
[51] | Dyson F J 1962 J. Math. Phys. 3 1191 | A Brownian‐Motion Model for the Eigenvalues of a Random Matrix
[52] | Serbyn M and Moore J E 2016 Phys. Rev. B 93 041424(R) | Spectral statistics across the many-body localization transition
[53] | Huse D A, Nandkishore R, Oganesyan V, Pal A and Sondhi S L 2013 Phys. Rev. B 88 014206 | Localization-protected quantum order
[54] | Lazarides A, Das A and Moessner R 2015 Phys. Rev. Lett. 115 030402 | Fate of Many-Body Localization Under Periodic Driving
[55] | Khemani V, Lazarides A, Moessner R and Sondhi S L 2016 Phys. Rev. Lett. 116 250401 | Phase Structure of Driven Quantum Systems
[56] | Yao N Y, Potter A C, Potirniche I D and Vishwanath A 2017 Phys. Rev. Lett. 118 030401 | Discrete Time Crystals: Rigidity, Criticality, and Realizations
[57] | Su W, Chen M N, Shao L B, Sheng L and Xing D Y 2016 Phys. Rev. B 94 075145 | Electron-electron interaction effects in Floquet topological superconducting chains: Suppression of topological edge states and crossover from weak to strong chaos
[58] | Carleo G and Troyer M 2017 Science 355 602 | Solving the quantum many-body problem with artificial neural networks
[59] | Deng D L, Li X and Das Sarma S 2017 Phys. Rev. B 96 195145 | Machine learning topological states
[60] | Huang Y and Moore J E 2017 arXiv:1701.06246 [cond-mat.dis-nn] | Neural network representation of tensor network and chiral states
[61] | Chen J, Cheng S, Xie H, Wang L and Xiang T 2018 Phys. Rev. B 97 085104 | Equivalence of restricted Boltzmann machines and tensor network states
[62] | Deng D L, Li X and Das Sarma S 2017 Phys. Rev. X 7 021021 | Quantum Entanglement in Neural Network States
[63] | Levine Y, Yakira D, Cohen N and Shashua A 2017 arXiv:1704.01552 [cs.LG] | Deep Learning and Quantum Entanglement: Fundamental Connections with Implications to Network Design