[1] | Nagaosa N and Tokura Y 2013 Nat. Nanotechnol. 8 899 | Topological properties and dynamics of magnetic skyrmions
[2] | Liu Y H and Li Y Q 2015 Chin. Phys. B 24 017506 | Dynamics of magnetic skyrmions
[3] | Bazeia D, Ramos J G G S and Rodrigues E I B 2017 J. Magn. Magn. Mater. 423 411 | Topological strength of magnetic skyrmions
[4] | Jiang W, Chen G, Liu K, Zang J, te Velthuis S G E and Hoffmann A 2017 Phys. Rep. 704 1 | Skyrmions in magnetic multilayers
[5] | Ding B and Wang W H 2018 Physics 47 15 (in Chinese) |
[6] | Fert A, Cros V and Sampaio J 2013 Nat. Nanotechnol. 8 152 | Skyrmions on the track
[7] | Finocchio G, Büttner F, Tomasello R, Carpentieri M and Kläui M 2016 J. Phys. D 49 423001 | Magnetic skyrmions: from fundamental to applications
[8] | Wiesendanger R 2016 Nat. Rev. Mater. 1 16044 | Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics
[9] | Zhang X, Zhou Y, Mee Song K, Park T E, Xia J, Ezawa M, Liu X, Zhao W, Zhao G and Woo S 2020 J. Phys.: Condens. Matter 32 143001 | Skyrmion-electronics: writing, deleting, reading and processing magnetic skyrmions toward spintronic applications
[10] | Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E and Hoffmann A 2015 Science 349 283 | Blowing magnetic skyrmion bubbles
[11] | Zang J, Mostovoy M, Han J H and Nagaosa N 2011 Phys. Rev. Lett. 107 136804 | Dynamics of Skyrmion Crystals in Metallic Thin Films
[12] | Tomasello R, Martinez E, Zivieri R, Torres L, Carpentieri M and Finocchio G 2015 Sci. Rep. 4 6784 | A strategy for the design of skyrmion racetrack memories
[13] | Jiang W, Zhang X, Yu G, Zhang W, Wang X, Benjamin Jungfleisch M, Pearson John E, Cheng X, Heinonen O, Wang K L, Zhou Y, Hoffmann A and te Velthuis Suzanne G E 2017 Nat. Phys. 13 162 | Direct observation of the skyrmion Hall effect
[14] | Litzius K, Lemesh I, Krüger B, Bassirian P, Caretta L, Richter K, Büttner F, Sato K, Tretiakov O A, Förster J, Reeve R M, Weigand M, Bykova I, Stoll H, Schütz G, Beach G S D and Kläui M 2017 Nat. Phys. 13 170 | Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy
[15] | Zhang X, Zhou Y and Ezawa M 2016 Nat. Commun. 7 10293 | Magnetic bilayer-skyrmions without skyrmion Hall effect
[16] | Dohi T, DuttaGupta S, Fukami S and Ohno H 2019 Nat. Commun. 10 5153 | Formation and current-induced motion of synthetic antiferromagnetic skyrmion bubbles
[17] | Legrand W, Maccariello D, Ajejas F, Collin S, Vecchiola A, Bouzehouane K, Reyren N, Cros V and Fert A 2020 Nat. Mater. 19 34 | Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets
[18] | Taguchi Y, Oohara Y, Yoshizawa H, Nagaosa N and Tokura Y 2001 Science 291 2573 | Spin Chirality, Berry Phase, and Anomalous Hall Effect in a Frustrated Ferromagnet
[19] | Schulz T, Ritz R, Bauer A, Halder M, Wagner M, Franz C, Pfleiderer C, Everschor K, Garst M and Rosch A 2012 Nat. Phys. 8 301 | Emergent electrodynamics of skyrmions in a chiral magnet
[20] | Yu G, Jenkins A, Ma X, Razavi S A, He C, Yin G, Shao Q, He Q L, Wu H, Li W, Jiang W, Han X, Li X, Bleszynski Jayich A C, Amiri P K and Wang K L 2018 Nano Lett. 18 980 | Room-Temperature Skyrmions in an Antiferromagnet-Based Heterostructure
[21] | Tolley R, Montoya S A and Fullerton E E 2018 Phys. Rev. Mater. 2 044404 | Room-temperature observation and current control of skyrmions in Pt/Co/Os/Pt thin films
[22] | Hou Z, Zhang Q, Xu G, Gong C, Ding B, Wang Y, Li H, Liu E, Xu F, Zhang H, Yao Y, Wu G, Zhang X X and Wang W 2018 Nano Lett. 18 1274 | Creation of Single Chain of Nanoscale Skyrmion Bubbles with Record-High Temperature Stability in a Geometrically Confined Nanostripe
[23] | Raju M, Yagil A, Soumyanarayanan A, Tan A K C, Almoalem A, Ma F, Auslaender O M and Panagopoulos C 2019 Nat. Commun. 10 696 | The evolution of skyrmions in Ir/Fe/Co/Pt multilayers and their topological Hall signature
[24] | Lee M, Kang W, Onose Y, Tokura Y and Ong N P 2009 Phys. Rev. Lett. 102 186601 | Unusual Hall Effect Anomaly in MnSi under Pressure
[25] | Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G and Boni P 2009 Phys. Rev. Lett. 102 186602 | Topological Hall Effect in the Phase of MnSi
[26] | Kanazawa N, Onose Y, Arima T, Okuyama D, Ohoyama K, Wakimoto S, Kakurai K, Ishiwata S and Tokura Y 2011 Phys. Rev. Lett. 106 156603 | Large Topological Hall Effect in a Short-Period Helimagnet MnGe
[27] | Huang S X and Chien C L 2012 Phys. Rev. Lett. 108 267201 | Extended Skyrmion Phase in Epitaxial Thin Films
[28] | Li Y, Kanazawa N, Yu X Z, Tsukazaki A, Kawasaki M, Ichikawa M, Jin X F, Kagawa F and Tokura Y 2013 Phys. Rev. Lett. 110 117202 | Robust Formation of Skyrmions and Topological Hall Effect Anomaly in Epitaxial Thin Films of MnSi
[29] | Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241 | A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics
[30] | Moriya T 1960 Phys. Rev. 120 91 | Anisotropic Superexchange Interaction and Weak Ferromagnetism
[31] | Soumyanarayanan A, Raju M, Gonzalez Oyarce A L, Tan A K C, Im M Y, Petrovic A P, Ho P, Khoo K H, Tran M, Gan C K, Ernult F and Panagopoulos C 2017 Nat. Mater. 16 898 | Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers
[32] | Meng K Y, Ahmed A S, Baćani M, Mandru A O, Zhao X, Bagués N, Esser B D, Flores J, McComb D W, Hug H J and Yang F 2019 Nano Lett. 19 3169 | Observation of Nanoscale Skyrmions in SrIrO 3 /SrRuO 3 Bilayers
[33] | Meng K K, Zhu L J, Jin Z H, Liu E K, Zhao X P, Malik I A, Fu Z G, Wu Y, Miao J, Xu X G, Zhang J X, Zhao J H and Jiang Y 2019 Phys. Rev. B 100 184410 | Interface-driven unusual anomalous Hall effect in bilayers
[34] | Ranjbar R, Suzuki K, Sugihara A, Miyazaki T, Ando Y and Mizukami S 2015 Mater. (Basel) 8 6531 | Engineered Heusler Ferrimagnets with a Large Perpendicular Magnetic Anisotropy
[35] | Lu J, Mao S W, Zhao X P, Wang X L, Liu J, Xia J B, Xiong P and Zhao J H 2017 Sci. Rep. 7 16990 | Design and Synthesis of an Artificial Perpendicular Hard Ferrimagnet with High Thermal and Magnetic Field Stabilities
[36] | Mao S W, Lu J, Zhao X P, Wang X L, Wei D H, Liu J, Xia J B and Zhao J H 2017 Sci. Rep. 7 43064 | MnGa-based fully perpendicular magnetic tunnel junctions with ultrathin Co2MnSi interlayers
[37] | Matsuno J, Ogawa N, Yasuda K, Kagawa F, Koshibae W, Nagaosa N, Tokura Y and Kawasaki M 2016 Sci. Adv. 2 e1600304 | Interface-driven topological Hall effect in SrRuO 3 -SrIrO 3 bilayer
[38] | Meng K K, Zhao X P, Liu P F, Liu Q, Wu Y, Li Z P, Chen J K, Miao J, Xu X G, Zhao J H and Jiang Y 2018 Phys. Rev. B 97 060407 | Robust emergence of a topological Hall effect in MnGa/heavy metal bilayers
[39] | Kan D, Moriyama T, Kobayashi K and Shimakawa Y 2018 Phys. Rev. B 98 180408(R) | Alternative to the topological interpretation of the transverse resistivity anomalies in
[40] | Gerber A 2018 Phys. Rev. B 98 214440 | Interpretation of experimental evidence of the topological Hall effect