[1] | Novoselov K S, Fal V, Colombo L, Gellert P, Schwab M and Kim K 2012 Nature 490 192 | A roadmap for graphene
[2] | Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 | Unconventional superconductivity in magic-angle graphene superlattices
[3] | Ma Q, Lui C H, Song J C, Lin Y, Kong J F, Cao Y, Dinh T H, Nair N L, Fang W and Watanabe K 2019 Nat. Nanotechnol. 14 145 | Giant intrinsic photoresponse in pristine graphene
[4] | Yang H, Qin S, Zheng X, Wang G, Tan Y, Peng G and Zhang X 2017 J. Nanomater. 7 286 | An Al2O3 Gating Substrate for the Greater Performance of Field Effect Transistors Based on Two-Dimensional Materials
[5] | Chen W, Qin S, Zhang X A, Zhang S, Fang J, Wang G, Wang C, Wang L and Chang S 2014 Carbon 77 1090 | Current self-amplification effect of graphene-based transistor in high-field transport
[6] | Luo F, Fan Y, Peng G, Xu S, Yang Y, Yuan K, Liu J, Ma W, Xu W and Zhu Z H 2019 ACS Photon. 6 2117 | Graphene Thermal Emitter with Enhanced Joule Heating and Localized Light Emission in Air
[7] | Jang C, Adam S, Chen J H, Williams E D, Sarma S D and Fuhrer M 2008 Phys. Rev. Lett. 101 146805 | Tuning the Effective Fine Structure Constant in Graphene: Opposing Effects of Dielectric Screening on Short- and Long-Range Potential Scattering
[8] | Zou X, Wang J, Chiu C H, Wu Y, Xiao X, Jiang C, Wu W W, Mai L, Chen T and Li J 2014 Adv. Mater. 26 6255 | Interface Engineering for High-Performance Top-Gated MoS 2 Field-Effect Transistors
[9] | George S M 2010 Chem. Rev. 110 111 | Atomic Layer Deposition: An Overview
[10] | Puurunen R L 2005 J. Appl. Phys. 97 9 | Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process
[11] | Yang H, Tan C, Deng C, Zhang R, Zheng X, Zhang X, Hu Y, Guo X, Wang G and Jiang T 2019 Small 15 1904482 | Bolometric Effect in Bi 2 O 2 Se Photodetectors
[12] | Jandhyala S, Mordi G, Lee B, Lee G, Floresca C, Cha P R, Ahn J, Wallace R M, Chabal Y J and Kim M J 2012 ACS Nano 6 2722 | Atomic Layer Deposition of Dielectrics on Graphene Using Reversibly Physisorbed Ozone
[13] | Wang L, Travis J J, Cavanagh A S, Liu X, Koenig S P, Huang P Y, George S M and Bunch J S 2012 Nano Lett. 12 3706 | Ultrathin Oxide Films by Atomic Layer Deposition on Graphene
[14] | Kim H G and Lee H B R 2017 Chem. Mater. 29 3809 | Atomic Layer Deposition on 2D Materials
[15] | Cheng L, Qin X, Lucero A T, Azcatl A, Huang J, Wallace R M, Cho K and Kim J 2014 ACS Appl. Mater. & Interfaces 6 11834 | Atomic Layer Deposition of a High- k Dielectric on MoS 2 Using Trimethylaluminum and Ozone
[16] | Price K M, Schauble K E, McGuire F A, Farmer D B and Franklin A D 2017 ACS Appl. Mater. & Interfaces 9 23072 | Uniform Growth of Sub-5-Nanometer High-κ Dielectrics on MoS 2 Using Plasma-Enhanced Atomic Layer Deposition
[17] | Shin W C, Bong J H, Choi S Y and Cho B J 2013 ACS Appl. Mater. & Interfaces 5 11515 | Functionalized Graphene as an Ultrathin Seed Layer for the Atomic Layer Deposition of Conformal High- k Dielectrics on Graphene
[18] | Wang X, Tabakman S M and Dai H 2008 J. Am. Chem. Soc. 130 8152 | Atomic Layer Deposition of Metal Oxides on Pristine and Functionalized Graphene
[19] | Sangwan V K, Jariwala D, Filippone S A, Karmel H J, Johns J E, Alaboson J M, Marks T J, Lauhon L J and Hersam M C 2013 Nano Lett. 13 1162 | Quantitatively Enhanced Reliability and Uniformity of High-κ Dielectrics on Graphene Enabled by Self-Assembled Seeding Layers
[20] | Alaboson J M, Wang Q H, Emery J D, Lipson A L, Bedzyk M J, Elam J W, Pellin M J and Hersam M C 2011 ACS Nano 5 5223 | Seeding Atomic Layer Deposition of High- k Dielectrics on Epitaxial Graphene with Organic Self-Assembled Monolayers
[21] | Xiang D, Han C, Wu J, Zhong S, Liu Y, Lin J, Zhang X A, Hu W P, Özyilmaz B and Neto A C 2015 Nat. Commun. 6 6485 | Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus
[22] | Dignam M, Fawcett W and Böhni H 1966 J. Electrochem. Soc. 113 656 | The Kinetics and Mechanism of Oxidation of Superpurity Aluminum in Dry Oxygen
[23] | Fuhrer M S and Hone J 2013 Nat. Nanotechnol. 8 146 | Measurement of mobility in dual-gated MoS2 transistors
[24] | Zheng L, Cheng X, Cao D, Wang G, Wang Z, Xu D, Xia C, Shen L, Yu Y and Shen D 2014 ACS Appl. Mater. & Interfaces 6 7014 | Improvement of Al 2 O 3 Films on Graphene Grown by Atomic Layer Deposition with Pre-H 2 O Treatment
[25] | Liu Y, Cai Y, Zhang G, Zhang Y W and Ang K W 2017 Adv. Funct. Mater. 27 1604638 | Al-Doped Black Phosphorus p-n Homojunction Diode for High Performance Photovoltaic
[26] | Zhang Y, Qiu Z, Cheng X, Xie H, Wang H, Xie X, Yu Y and Liu R 2014 J. Phys. D 47 055106 | Direct growth of high-quality Al 2 O 3 dielectric on graphene layers by low-temperature H 2 O-based ALD
[27] | Lin K X, Li D S, Ye Y, Jiang W G, Ye Z G, Qin Q H and Zou W 2018 Acta Phys. Sin. 67 246802 (in Chinese) | Review of fabrication methods, physical properties, and applications of twisted bilayer graphene
[28] | Liao L, Bai J, Qu Y, Huang Y and Duan X 2010 Nanotechnology 21 015705 | Single-layer graphene on Al 2 O 3 /Si substrate: better contrast and higher performance of graphene transistors
[29] | Yang H, Qin S, Peng G, Zheng X and Zhang X 2016 Nano 11 1650141 | Ultraviolet-Ozone Treatment for Effectively Removing Adhesive Residue on Graphene
[30] | Malard L, Pimenta M, Dresselhaus G and Dresselhaus M 2009 Phys. Rep. 473 51 | Raman spectroscopy in graphene
[31] | Zheng X, Chen W, Wang G, Yu Y, Qin S, Fang J, Wang F and Zhang X A 2015 AIP Adv. 5 057133 | The Raman redshift of graphene impacted by gold nanoparticles
[32] | Nayfeh O M, Marr T and Dubey M 2011 IEEE Electron Device Lett. 32 473 | Impact of Plasma-Assisted Atomic-Layer-Deposited Gate Dielectric on Graphene Transistors
[33] | Guo B, Xiao Q, Wang S and Zhang H 2019 Laser & Photon. Rev. 13 1800327 | 2D Layered Materials: Synthesis, Nonlinear Optical Properties, and Device Applications
[34] | Kaushik N, Mackenzie D M, Thakar K, Goyal N, Mukherjee B, Boggild P, Petersen D H and Lodha S 2017 npj 2D Mater. Appl. 1 1 | Your new travel guide to the flatlands
[35] | Na J, Lee Y T, Lim J A, Hwang D K, Kim G T, Choi W K and Song Y W 2014 ACS Nano 8 11753 | Few-Layer Black Phosphorus Field-Effect Transistors with Reduced Current Fluctuation
[36] | Zheng Y, Hu Z, Han C, Guo R, Xiang D, Lei B, Wang Y, He J, Lai M and Chen W 2019 Nano Res. 12 531 | Black phosphorus inverter devices enabled by in-situ aluminum surface modification
[37] | Xia J, Chen F, Li J and Tao N 2009 Nat. Nanotechnol. 4 505 | Measurement of the quantum capacitance of graphene
[38] | Dhanabalan S C, Dhanabalan B, Ponraj J S, Bao Q and Zhang H 2017 Adv. Opt. Mater. 5 1700257 | 2D-Materials-Based Quantum Dots: Gateway Towards Next-Generation Optical Devices
[39] | Zhou Y, Zhang M, Guo Z, Miao L, Han S, Wang Z, Zhang X, Zhang H and Peng Z 2017 Mater. Horiz. 4 997 | Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices
[40] | Lee B, Mordi G, Kim M, Chabal Y, Vogel E, Wallace R, Cho K, Colombo L and Kim J 2010 Appl. Phys. Lett. 97 043107 | Characteristics of high-k Al2O3 dielectric using ozone-based atomic layer deposition for dual-gated graphene devices
[41] | Jandhyala S, Mordi G, Lee B and Kim J 2012 ECS Trans. 45 39 | In Situ Electrical Studies of Ozone Based Atomic Layer Deposition on Graphene
[42] | Wu Y, Ye P, Capano M A, Xuan Y, Sui Y, Qi M, Cooper J A, Shen T, Pandey D and Prakash G 2008 Appl. Phys. Lett. 92 092102 | Top-gated graphene field-effect-transistors formed by decomposition of SiC
[43] | Oh J G, Pak K, Kim C S, Bong J H, Hwang W S, Im S G and Cho B J 2018 Small 14 1703035 | A High-Performance Top-Gated Graphene Field-Effect Transistor with Excellent Flexibility Enabled by an iCVD Copolymer Gate Dielectric
[44] | Williams J, DiCarlo L and Marcus C 2007 Science 317 638 | Quantum Hall Effect in a Gate-Controlled p-n Junction of Graphene
[45] | Park D W, Mikael S, Chang T H, Gong S and Ma Z 2015 Appl. Phys. Lett. 106 102106 | Bottom-gate coplanar graphene transistors with enhanced graphene adhesion on atomic layer deposition Al 2 O 3