Processing math: 100%

Possible Tricritical Behavior and Anomalous Lattice Softening in van der Waals Itinerant Ferromagnet Fe3GeTe2 under High Pressure

Funds: Supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0305704 and 2016YFA0401804), the National Natural Science Foundation of China (Grant Nos. 11774352, U1832214, U19A2093, 11804344, U1632275, 11874362, 11704387, and U1932152), the Users with Excellence Project of Hefei Center CAS (Grant No. 2018HSC-UE012), the Major Program of Development Foundation of Hefei Center for Physical Science and Technology (Grant No. 2018ZYFX002), the Youth Innovation Promotion Association CAS (Grant No. 2020443).
  • Received Date: March 09, 2020
  • Published Date: June 30, 2020
  • We present a high-pressure study of van der Waals ferromagnetic metal Fe3GeTe2 through electrical transport and Raman scattering measurements in diamond anvil cells at pressures up to 22.4 GPa. Upon compression, the ferromagnetic transition temperature Tc manifested by a kink in resistance curve decreases monotonically and becomes undiscernable around Pc=10 GPa, indicative of suppression of the itinerant ferromagnetism. Meanwhile, by fitting the low temperature resistance to the Fermi liquid behavior of R=R0+AT2, we found that R0 shows a cusp-like anomaly and the coefficient A diverges around Pc. These transport anomalies imply a tricritical point as commonly observed in itinerant ferromagnets under pressure. Unexpectedly, the Raman-active E2g and A1g modes soften remarkably after an initial weak hardening and the peak widths of both modes broaden evidently on approaching Pc, followed by complete disappearance of both modes above this critical pressure. A possible underlying mechanism for such anomalous lattice softening near Pc is discussed.
  • Article Text

  • [1]
    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Di. Zhong, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270 doi: 10.1038/nature22391

    CrossRef Google Scholar

    [2]
    McGuire M A, Dixit H, Cooper V R and Sales B C 2015 Chem. Mater. 27 612 doi: 10.1021/cm504242t

    CrossRef Google Scholar

    [3]
    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265 doi: 10.1038/nature22060

    CrossRef Google Scholar

    [4]
    Zhang X, Zhao Y, Song Q, Jia S, Shi J and Han W 2016 Jpn. J. Appl. Phys. 55 033001 doi: 10.7567/JJAP.55.033001

    CrossRef Google Scholar

    [5]
    Wang Y, Xian C, Wang J, Liu B, Ling L, Zhang L, Cao L, Qu Z and Xiong Y 2017 Phys. Rev. B 96 134428 doi: 10.1103/PhysRevB.96.134428

    CrossRef Google Scholar

    [6]
    Alghamdi M, Lohmann M, Li J, Jothi P R, Shao Q, Aldosary M, Su T, Fokwa B P T and Shi J 2019 Nano Lett. 19 4400 doi: 10.1021/acs.nanolett.9b01043

    CrossRef Google Scholar

    [7]
    Du L, Tang J, Zhao Y, Li X, Yang R, Hu X, Bai X, Wang X, Watanabe K, Taniguchi T, Shi D, Yu G, Bai X, Hasan T, Zhang G and Sun Z 2019 Adv. Funct. Mater. 29 1904734 doi: 10.1002/adfm.201904734

    CrossRef Google Scholar

    [8]
    Li X, Zhang J, You L, Su Y and Tsymbal E Y 2019 Nano Lett. 19 5133 doi: 10.1021/acs.nanolett.9b01506

    CrossRef Google Scholar

    [9]
    Wang Z, Sapkota D, Taniguchi T, Watanabe K, Mandrus D and Morpurgo A F 2018 Nano Lett. 18 4303 doi: 10.1021/acs.nanolett.8b01278

    CrossRef Google Scholar

    [10]
    Milosavljević A et al.. 2019 Phys. Rev. B 99 214304 doi: 10.1103/PhysRevB.99.214304

    CrossRef Google Scholar

    [11]
    Tan C, Lee J, Jung S G, Park T, Albarakati S, Partridge J, Field M R, McCulloch D G, Wang L and Lee C 2018 Nat. Commun. 9 1554 doi: 10.1038/s41467-018-04018-w

    CrossRef Google Scholar

    [12]
    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H and Zhang Y 2018 Nature 563 94 doi: 10.1038/s41586-018-0626-9

    CrossRef Google Scholar

    [13]
    Chen H Y, He C Y, Gao C X et al.. 2007 Chin. Phys. Lett. 24 158 doi: 10.1088/0256-307X/24/1/043

    CrossRef Google Scholar

    [14]
    Ren G Z, Jia X P, Zhu P W et al.. 2005 Chin. Phys. Lett. 22 236 doi: 10.1088/0256-307X/22/1/068

    CrossRef Google Scholar

    [15]
    Du Z X and Zheng H F 2008 Chin. Phys. Lett. 25 1875 doi: 10.1088/0256-307X/25/5/096

    CrossRef Google Scholar

    [16]
    Jiang S, Liu J, Li X D et al.. 2019 Chin. Phys. Lett. 36 046103 doi: 10.1088/0256-307X/36/4/046103

    CrossRef Google Scholar

    [17]
    Zhang W, Yao L D, You S J et al.. 2007 Chin. Phys. Lett. 24 536 doi: 10.1088/0256-307X/24/2/065

    CrossRef Google Scholar

    [18]
    Wang X, Li Z, Zhang M, Hou T, Zhao J, Li L, Rahman A, Xu Z, Gong J, Chi Z, Dai R, Wang Z, Qiao Z and Zhang Z 2019 Phys. Rev. B 100 014407 doi: 10.1103/PhysRevB.100.014407

    CrossRef Google Scholar

    [19]
    Zhang T, Wang Y, Li H, Zhong F, Shi J, Wu M, Sun Z, Shen W, Wei B, Hu W, Liu X, Huang L, Hu C, Wang Z, Jiang C, Yang S, Zhang Q M and Qu Z 2019 ACS Nano 13 11353 doi: 10.1021/acsnano.9b04726

    CrossRef Google Scholar

    [20]
    Doiron-Leyraud N, Walker I R, Taillefer L, Steiner M J, Julian S R and Lonzarich G G 2003 Nature 425 595 doi: 10.1038/nature01968

    CrossRef Google Scholar

    [21]
    Cheng J G, Matsubayashi K, Wu W, Sun J P, Lin F K, Luo J L and Uwatoko Y 2015 Phys. Rev. Lett. 114 117001 doi: 10.1103/PhysRevLett.114.117001

    CrossRef Google Scholar

    [22]
    Matsuda M, Lin F K, Yu R, Cheng J G, Wu W, Sun J P, Zhang J H, Sun P J, Matsubayashi K, Miyake T, Kato T, Yan J Q, Stone M B, Si Q, Luo J L and Uwatoko Y 2018 Phys. Rev. X 8 031017 doi: 10.1103/PhysRevX.8.031017

    CrossRef Google Scholar

    [23]
    Maczka M, Paraguassu W, Filho A G S, Freire P T C, Filho J M and Hanuza J 2008 Phys. Rev. B - Condens. Matter Mater. Phys. 77 094137 doi: 10.1103/PhysRevB.77.094137

    CrossRef Google Scholar

    [24]
    Ge W, Xu K, Xia W, Yu Z, Wang H, Liu X, Zhao J, Wang X, Yu N, Zou Z, Yan Z, Wang L, Xu M and Guo Y 2020 J. Alloys Compd. 819 153368 doi: 10.1016/j.jallcom.2019.153368

    CrossRef Google Scholar

    [25]
    Taufour V, Aoki D, Knebel G and Flouquet J 2010 Phys. Rev. Lett. 105 217201 doi: 10.1103/PhysRevLett.105.217201

    CrossRef Google Scholar

    [26]
    Cochran W 1959 Adv. Phys. 9 387 doi: 10.1080/00018736000101229

    CrossRef Google Scholar

    [27]
    Chen B, Yang J H, Wang H D, Imai M, Ohta H, Michioka C, Yoshimura K and Fang M H 2013 J. Phys. Soc. Jpn. 82 124711 doi: 10.7566/JPSJ.82.124711

    CrossRef Google Scholar

    [28]
    Matsuura K, Cong P T, Zherlitsyn S, Wosnitza J, Abe N and Arima T 2020 Phys. Rev. Lett. 124 127205 doi: 10.1103/PhysRevLett.124.127205

    CrossRef Google Scholar

  • Related Articles

    [1]Jiao Xie, Jun-Lin Xiong, Bin Cheng, Shi-Jun Liang, Feng Miao. In-Memory Probabilistic Computing using Gate-tunable Layer Pseudospins in van der Waals Heterostructures [J]. Chin. Phys. Lett., 2025, 42(4): 040202. doi: 10.1088/0256-307X/42/4/040202
    [2]WANG De-Hua. Dynamics of a Rydberg Hydrogen Atom in a Generalized van der Waals Potential and a Magnetic Field [J]. Chin. Phys. Lett., 2010, 27(2): 023201. doi: 10.1088/0256-307X/27/2/023201
    [3]ZHOU Shi-Qi. Phase Behaviour of Purely Repulsive Systems: Violation of Traditional van der Waals Picture [J]. Chin. Phys. Lett., 2008, 25(6): 2132-2135.
    [4]ZENG Zhao-Yi, LIU Zhong-Li, CHEN Xiang-Rong, CAI Ling-Cang, JINGFu-Qian. Structures and Equation of State of ε-Fe under High Pressure [J]. Chin. Phys. Lett., 2008, 25(5): 1757-1760.
    [5]LI Kang, CHAMOUN Nidal. Van der Waals interactions and Photoelectric Effect in Noncommutative Quantum Mechanics [J]. Chin. Phys. Lett., 2007, 24(5): 1183-1186.
    [6]MA Yan-Mei, CHEN Hai-Yong, LI Xue-Fei, GAO Ling-Ling, CUI Qi-Liang, ZOUGuang-Tian. Raman and X-Ray Investigation of Pyrope Garnet (Mg 0.76 Fe 0.14 Ca 0.10)3Al2Si3O12 under High Pressure [J]. Chin. Phys. Lett., 2007, 24(5): 1180-1182.
    [7]LIU Nan, BAI Yi-Long, XIA Meng-Fen, KE Fu-Jiu. Combined Effect of Surface Tension, Gravity and van der Waals Force Induced by a Non-Contact Probe Tip on the Shape of Liquid Surface [J]. Chin. Phys. Lett., 2005, 22(8): 2012-2015.
    [8]BAI Haiyang, LUO Jianlin, JIN Duo, SUN Jirong. Anomalous Specific Heat Behavior of Nanocrystalline Fe at Low Temperatures [J]. Chin. Phys. Lett., 1995, 12(9): 549-552.
    [9]CHEN Guan-mian, LI Jing-yuan. A NEW WEAK ITINERANT FERROMAGNET Fe2N [J]. Chin. Phys. Lett., 1985, 2(8): 365-368.
    [10]ZENG Xi-zhi. DETERMINATION OF THE SPIN COUPLING CONSTANTS IN THE 87Rb 129Xe VAN der WAALS MOLECULE [J]. Chin. Phys. Lett., 1985, 2(7): 325-328.

Catalog

    Article views (775) PDF downloads (745) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return