[1] | Roland C M, Hensel-Bielowka S, Paluch M and Casalini R 2005 Rep. Prog. Phys. 68 1405 | Supercooled dynamics of glass-forming liquids and polymers under hydrostatic pressure
[2] | Ngai K L and Capaccioli S 2008 J. Phys.: Condens. Matter 20 244101 | Impact of the application of pressure on the fundamental understanding of glass transition
[3] | Lü Y, Cheng H and Chen M 2012 J. Chem. Phys. 136 214505 | A molecular dynamics examination of the relationship between self-diffusion and viscosity in liquid metals
[4] | Han X J, Li J G and Schober H R 2016 J. Chem. Phys. 144 124505 | High temperature breakdown of the Stokes-Einstein relation in a computer simulated Cu-Zr melt
[5] | Cao Q, Wang P and Huang D 2020 Phys. Chem. Chem. Phys. 22 2557 | Revisiting the Stokes–Einstein relation for glass-forming melts
[6] | Jaiswal A, Egami T and Zhang Y 2015 Phys. Rev. B 91 134204 | Atomic-scale dynamics of a model glass-forming metallic liquid: Dynamical crossover, dynamical decoupling, and dynamical clustering
[7] | Hu Y C, Li F X, Li M Z, Bai H Y and Wang W H 2016 J. Appl. Phys. 119 205108 | Structural signatures evidenced in dynamic crossover phenomena in metallic glass-forming liquids
[8] | Jaiswal A, Egami T, Kelton K F, Schweizer K S and Zhang Y 2016 Phys. Rev. Lett. 117 205701 | Correlation between Fragility and the Arrhenius Crossover Phenomenon in Metallic, Molecular, and Network Liquids
[9] | Xu L, Mallamace F, Yan Z, Starr F W, Buldyrev S V and Eugene Stanley H 2009 Nat. Phys. 5 565 | Appearance of a fractional Stokes–Einstein relation in water and a structural interpretation of its onset
[10] | Pan S, Wu Z W, Wang W H, Li M Z and Xu L 2017 Sci. Rep. 7 39938 | Structural origin of fractional Stokes-Einstein relation in glass-forming liquids
[11] | Lad K N, Jakse N and Pasturel A 2012 J. Chem. Phys. 136 104509 | Signatures of fragile-to-strong transition in a binary metallic glass-forming liquid
[12] | Mukherjee A, Bhattacharyya S and Bagchi B 2002 J. Chem. Phys. 116 4577 | Pressure and temperature dependence of viscosity and diffusion coefficients of a glassy binary mixture
[13] | Hu Y, Guan P, Wang Q, Yang Y and Bai H 2017 J. Chem. Phys. 146 024507 | Pressure effects on structure and dynamics of metallic glass-forming liquid
[14] | Cheng Y Q, Ma E and Sheng H W 2009 Phys. Rev. Lett. 102 244501 | Hydrodynamic Relaxation of an Electron Plasma to a Near-Maximum Entropy State
[15] | Ding J, Asta M and Ritchie R O 2016 Phys. Rev. B 93 140204(R) | Anomalous structure-property relationships in metallic glasses through pressure-mediated glass formation
[16] | Plimpton S 1995 J. Comput. Phys. 117 1 | Fast Parallel Algorithms for Short-Range Molecular Dynamics
[17] | Allen M P and Tildesley D J 1987 Computer Simulation of Liquids (Oxford: Clarendon Press) |
[18] | Hu Y C, Li F X, Wang W H, Li M Z, Bai H Y and Wang W H 2015 Nat. Commun. 6 8310 | Five-fold symmetry as indicator of dynamic arrest in metallic glass-forming liquids
[19] | Han X J and Schober H R 2011 Phys. Rev. B 83 224201 | Transport properties and Stokes-Einstein relation in a computer-simulated glass-forming Cu Zr melt
[20] | Zhou Y H, Han X J and Li J G 2019 J. Non-Cryst. Solids 517 83 | Transport properties and abnormal breakdown of the Stokes-Einstein relation in computer simulated Al72Ni16Co12 metallic melt
[21] | Kawasaki T, Araki T and Tanaka H 2007 Phys. Rev. Lett. 99 215701 | Correlation between Dynamic Heterogeneity and Medium-Range Order in Two-Dimensional Glass-Forming Liquids
[22] | Jakse N, Nguyen T L T and Pasturel A 2012 J. Chem. Phys. 137 204504 | Local order and dynamic properties of liquid Au x Si 1− x alloys by molecular dynamics simulations
[23] | Jakse N and Pasturel A 2014 J. Chem. Phys. 141 234504 | Interplay between the structure and dynamics in liquid and undercooled boron: An ab initio molecular dynamics simulation study
[24] | Cheng Y Q, Sheng H W and Ma E 2008 Phys. Rev. B 78 014207 | Relationship between structure, dynamics, and mechanical properties in metallic glass-forming alloys
[25] | Jakse N, Nguyen T L T, Pasturel A, Jakse N, Nguyen T L T and Pasturel A 2013 J. Appl. Phys. 114 063514 | Local order and dynamic properties of liquid and undercooled Cu 55 Hf 45 and Cu 62 Hf 38 alloys by ab initio molecular dynamics
[26] | Li C H, Luan Y W, Han X J and Li J G 2017 J. Non-Cryst. Solids 458 107 | Structural aspects of the Stokes-Einstein relation breakdown in high temperature melts
[27] | Trady S, Hasnaoui A and Mazroui M 2017 J. Non-Cryst. Solids 468 27 | Atomic packing and medium-range order in Ni 3 Al metallic glass
[28] | Yu C, Hui X, Chen X, Liu X, Lin D, Liu Z and Chen G 2010 Sci. Chin. Technol. Sci. 53 3175 | Ab initio molecular dynamics simulation of the atom packing and density of Al-Ni amorphous alloys
[29] | Saida J, Itoh K, Sato S and Imafuku M 2009 J. Phys.: Condens. Matter 21 375104 | Evaluation of the local environment for nanoscale quasicrystal formation in Zr 80 Pt 20 glassy alloy using Voronoi analysis
[30] | Mendelev M I, Kramer M J, Ott R T, Sordelet D J, Besser M F, Kreyssig A, Goldman A I, Wessels V, Sahu K K, Kelton K F, Hyers R W, Canepari S and Rogers J R 2010 Philos. Mag. 90 3795 | Experimental and computer simulation determination of the structural changes occurring through the liquid–glass transition in Cu–Zr alloys