[1] | Liu E K et al. 2012 Nat. Commun. 3 873 | Stable magnetostructural coupling with tunable magnetoresponsive effects in hexagonal ferromagnets
[2] | Sun A et al. 2015 Physica B 474 27 | First-order magnetic and magnetostructural transitions in the magnetocaloric compound MnNi0.73Fe0.27Ge
[3] | Wei Z Y et al. 2015 Adv. Electron. Mater. 1 1500076 | Unprecedentedly Wide Curie-Temperature Windows as Phase-Transition Design Platform for Tunable Magneto-Multifunctional Materials
[4] | Zhao Y Y et al. 2015 J. Am. Chem. Soc. 137 1746 | Giant Negative Thermal Expansion in Bonded MnCoGe-Based Compounds with Ni 2 In-Type Hexagonal Structure
[5] | Xu K et al. 2017 Sci. Rep. 7 41675 | Magnetocaloric effect and negative thermal expansion in hexagonal Fe doped MnNiGe compounds with a magnetoelastic AFM-FM-like transition
[6] | Chen L et al. 2018 Sci. Chin. Phys. Mech. Astron. 61 056121 | Outstanding magnetocaloric effect of Fe88−xZr8B4Sm x (x=0, 1, 2, 3) amorphous alloys
[7] | Franco V et al. 2018 Prog. Mater. Sci. 93 112 | Magnetocaloric effect: From materials research to refrigeration devices
[8] | Liu R S et al. 2020 Chin. Phys. Lett. 37 017501 | Table-Like Large Magnetocaloric Effect in the Misch Metal R Si Compound *
[9] | Li Y et al. 2016 APL Mater. 4 071101 | Windows open for highly tunable magnetostructural phase transitions
[10] | Nizioł S et al. 1983 J. Magn. Magn. Mater. 38 205 | Structural and magnetic phase transitions in CoxNi1−xMnGe system under pressure
[11] | Caron L, Trung N T and Brück E 2011 Phys. Rev. B 84 020414(R) | Pressure-tuned magnetocaloric effect in Mn Cr CoGe
[12] | Liu E K et al. 2010 Europhys. Lett. 91 17003 | Vacancy-tuned paramagnetic/ferromagnetic martensitic transformation in Mn-poor Mn 1-x CoGe alloys
[13] | Li Y et al. 2019 Acta Mater. 174 289 | An efficient scheme to tailor the magnetostructural transitions by staged quenching and cyclical ageing in hexagonal martensitic alloys
[14] | Shen B G et al. 2009 Adv. Mater. 21 4545 | Recent Progress in Exploring Magnetocaloric Materials
[15] | Moya X et al. 2013 Nat. Mater. 12 52 | Giant and reversible extrinsic magnetocaloric effects in La0.7Ca0.3MnO3 films due to strain
[16] | Fujita A et al. 2006 Phys. Rev. B 73 104420 | Pressure-induced anomalies in itinerant-electron metamagnetic properties around the critical end point in
[17] | Sun Y et al. 2006 Appl. Phys. Lett. 88 102505 | Tuning of magnetocaloric effect in a La0.69Ca0.31MnO3 single crystal by pressure
[18] | Mañosa L S et al. 2008 Appl. Phys. Lett. 92 012515 | Effects of hydrostatic pressure on the magnetism and martensitic transition of Ni–Mn–In magnetic superelastic alloys
[19] | Wada H, Matsuo S and Mitsuda A 2009 Phys. Rev. B 79 092407 | Pressure dependence of magnetic entropy change and magnetic transition in
[20] | Kaštil J et al. 2015 J. Alloys Compd. 650 248 | Effect of pressure and high magnetic field on phase transitions and magnetic properties of Ni1.92Mn1.56Sn0.52 and Ni2MnSn Heusler compounds
[21] | Samanta T et al. 2015 Phys. Rev. B 91 020401(R) | Hydrostatic pressure-induced modifications of structural transitions lead to large enhancements of magnetocaloric effects in MnNiSi-based systems
[22] | Khalid S, Sabino F P and Janotti A 2018 Phys. Rev. B 98 220102 | Topological phase transition in LaAs under pressure
[23] | Liu F et al. 2019 Sci. Chin. Phys. Mech. Astron. 62 48211 | Pressure-induced Lifshitz transition in the type II Dirac semimetal PtTe2
[24] | You W et al. 2019 Sci. Chin. Phys. Mech. Astron. 62 957411 | Superconductivity, electronic phase diagram, and pressure effect in Sr1−xPrxFBiS2
[25] | Jiang S et al. 2019 Chin. Phys. Lett. 36 046103 | High-Pressure Phase Transitions of Cubic Y 2 O 3 under High Pressures by In-situ Synchrotron X-Ray Diffraction
[26] | Shang Y X et al. 2019 Chin. Phys. Lett. 36 086201 | Magnetic Sensing inside a Diamond Anvil Cell via Nitrogen-Vacancy Center Spins *
[27] | Eiling A and Schilling J S 1981 J. Phys. F 11 623 | Pressure and temperature dependence of electrical resistivity of Pb and Sn from 1-300K and 0-10 GPa-use as continuous resistive pressure monitor accurate over wide temperature range; superconductivity under pressure in Pb, Sn and In
[28] | Johnson V 1975 Inorg. Chem. 14 1117 | Diffusionless orthorhombic to hexagonal transitions in ternary silicides and germanides
[29] | Bazela W et al. 1976 Phys. Status Solidi A 38 721 | Crystal and magnetic structure of NiMnGe
[30] | Fjellvåg H and Andresen A F 1985 J. Magn. Magn. Mater. 50 291 | On the crystal structure and magnetic properties of MnNiGe
[31] | Bażela W et al. 1981 Phys. Status Solidi A 64 367 | Crystal and magnetic structure of the NiMnGe1−nSin System
[32] | Liu E et al. 2011 IEEE Trans. Magn. 47 4041 | Magnetostructural Transformation and Magnetoresponsive Properties of ${\rm MnNiGe}_{1-x}{\rm Sn}_{x}$ Alloys
[33] | Nayak A K et al. 2009 J. Appl. Phys. 106 053901 | Pressure induced magnetic and magnetocaloric properties in NiCoMnSb Heusler alloy
[34] | Taubel A et al. 2017 J. Phys. D 50 464005 | Influence of magnetic field, chemical pressure and hydrostatic pressure on the structural and magnetocaloric properties of the Mn–Ni–Ge system
[35] | Kanomata T et al. 1995 J. Magn. Magn. Mater. 140–144 131 | Magneto-volume effect of MnCo1−xGe(0⩽x⩽0.2)
[36] | Lloveras P et al. 2015 Nat. Commun. 6 8801 | Giant barocaloric effects at low pressure in ferrielectric ammonium sulphate
[37] | Aznar A et al. 2019 Adv. Mater. 31 1903577 | Giant and Reversible Inverse Barocaloric Effects near Room Temperature in Ferromagnetic MnCoGeB 0.03
[38] | Lloveras P et al. 2019 Nat. Commun. 10 1803 | Colossal barocaloric effects near room temperature in plastic crystals of neopentylglycol
[39] | Caron L et al. 2009 J. Magn. Magn. Mater. 321 3559 | On the determination of the magnetic entropy change in materials with first-order transitions