[1] | Yurke B, McCall S L and Klauder J R 1986 Phys. Rev. A 33 4033 | SU(2) and SU(1,1) interferometers
[2] | Pezzè L, Hyllus P and Smerzi A 2015 Phys. Rev. A 91 032103 | Phase-sensitivity bounds for two-mode interferometers
[3] | Liu J, Jing X and Wang X 2013 Phys. Rev. A 88 042316 | Phase-matching condition for enhancement of phase sensitivity in quantum metrology
[4] | Lang M D and Caves C M 2013 Phys. Rev. Lett. 111 173601 | Optimal Quantum-Enhanced Interferometry Using a Laser Power Source
[5] | Campos R A, Saleh B E A and Teich M C 1989 Phys. Rev. A 40 1371 | Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics
[6] | Plick W N, Dowling J P and Agarwal G S 2010 New J. Phys. 12 083014 | Coherent-light-boosted, sub-shot noise, quantum interferometry
[7] | Sanders B C and Milburn G J 1995 Phys. Rev. Lett. 75 2944 | Optimal Quantum Measurements for Phase Estimation
[8] | Jarzyna M and Demkowicz-Dobrzański R 2012 Phys. Rev. A 85 011801 | Quantum interferometry with and without an external phase reference
[9] | Gabbrielli M, Pezzè L and Smerzi A 2015 Phys. Rev. Lett. 115 163002 | Spin-Mixing Interferometry with Bose-Einstein Condensates
[10] | Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330 | Quantum-Enhanced Measurements: Beating the Standard Quantum Limit
[11] | Liu J, Yuan H, Lu X M and Wang X 2020 J. Phys. A 53 023001 | Quantum Fisher information matrix and multiparameter estimation
[12] | Tan Q S, Liao J Q, Wang X and Nori F 2014 Phys. Rev. A 89 053822 | Enhanced interferometry using squeezed thermal states and even or odd states
[13] | Pezzé L and Smerzi A 2008 Phys. Rev. Lett. 100 073601 | Mach-Zehnder Interferometry at the Heisenberg Limit with Coherent and Squeezed-Vacuum Light
[14] | Seshadreesan K P, Anisimov P M, Lee H and Dowling J P 2011 New J. Phys. 13 083026 | Parity detection achieves the Heisenberg limit in interferometry with coherent mixed with squeezed vacuum light
[15] | Pezzé L and Smerzi A 2013 Phys. Rev. Lett. 110 163604 | Ultrasensitive Two-Mode Interferometry with Single-Mode Number Squeezing
[16] | Takeoka M, Seshadreesan K P, You C, Izumi S and Dowling J P 2017 Phys. Rev. A 96 052118 | Fundamental precision limit of a Mach-Zehnder interferometric sensor when one of the inputs is the vacuum
[17] | Lang M D and Caves C M 2014 Phys. Rev. A 90 025802 | Optimal quantum-enhanced interferometry
[18] | Dorner U, Demkowicz-Dobrzanski R, Smith B J, Lundeen J S, Wasilewski W, Banaszek K and Walmsley I A 2009 Phys. Rev. Lett. 102 040403 | Optimal Quantum Phase Estimation
[19] | Pang S and Brun T A 2014 Phys. Rev. A 90 022117 | Quantum metrology for a general Hamiltonian parameter
[20] | Liu J, Jing X X and Wang X 2015 Sci. Rep. 5 8565 | Quantum metrology with unitary parametrization processes
[21] | Hyllus P, Pezzé L and Smerzi A 2010 Phys. Rev. Lett. 105 120501 | Entanglement and Sensitivity in Precision Measurements with States of a Fluctuating Number of Particles
[22] | Helstrom C W 1969 J. Stat. Phys. 1 231 | Quantum detection and estimation theory
[23] | Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439 | Statistical distance and the geometry of quantum states
[24] | Giovannetti V, Lloyd S and Maccone L 2006 Phys. Rev. Lett. 96 010401 | Quantum Metrology
[25] | Zhang S J, Ma H X, Wang X, Zhou C, Bao W S and Zhang H L 2019 Chin. Phys. B 28 80304 | Temperature effects on atmospheric continuous-variable quantum key distribution
[26] | Song W, Huang Y S, Yang M and Cao Z L 2015 Chin. Phys. Lett. 32 088701 | Motion-Enhanced Quantum Entanglement in the Dynamics of Excitation Transfer
[27] | Wang C Q, Zou J and Zhang Z M 2016 Chin. Phys. Lett. 33 024202 | Generating Squeezed States of Nanomechanical Resonator via a Flux Qubit in a Hybrid System
[28] | Yu X, Zhao X, Shen L, Shao Y, Liu J and Wang X 2018 Opt. Express 26 16292 | Maximal quantum Fisher information for phase estimation without initial parity
[29] | Liu J and Yuan H 2017 Phys. Rev. A 96 042114 | Control-enhanced multiparameter quantum estimation
[30] | Liu J and Yuan H 2017 Phys. Rev. A 96 012117 | Quantum parameter estimation with optimal control
[31] | Liu J, Jing X X, Zhong W and Wang X G 2014 Commun. Theor. Phys. 61 45 | Quantum Fisher Information for Density Matrices with Arbitrary Ranks
[32] | Liu J, Xiong H N, Song F and Wang X 2014 Physica A 410 167 | Fidelity susceptibility and quantum Fisher information for density operators with arbitrary ranks