[1] | Finkelstein M B and Ptitsyn O 2002 Protein Physics: A Course of Lectures (London: Academic Press) |
[2] | Segel I H 1993 Enzyme Kinetics (New York: Wiley-Interscience) |
[3] | Ran F A, Hsu P D, Wright J et al 2013 Nat. Protoc. 8 2281 | Genome engineering using the CRISPR-Cas9 system
[4] | Robertson J G 2005 Biochemistry 44 5561 | Mechanistic Basis of Enzyme-Targeted Drugs
[5] | Benkovic S J, Hammes-Schiffer S 2003 Science 301 1196 | A Perspective on Enzyme Catalysis
[6] | Cui Q and Karplus M 2003 Adv. Protein Chem. 66 315 | Advances in Protein Chemistry
[7] | Olsson W H M, Parson W W and Warshel A 2006 Chem. Rev. 106 1737 | Dynamical Contributions to Enzyme Catalysis: Critical Tests of A Popular Hypothesis
[8] | Warshel A 2003 Ann. Rev. Biophys. Biomol. Struct. 32 425 | Computer Simulations of Enzyme Catalysis: Methods, Progress, and Insights
[9] | Li W, Wang J, Zhang J et al 2019 Phys. Rev. Lett. 122 238102 | Overcoming the Bottleneck of the Enzymatic Cycle by Steric Frustration
[10] | Tong X, Hu R, Li X et al 2018 Chin. Phys. B 27 118705 | Probing conformational change of T7 RNA polymerase and DNA complex by solid-state nanopores
[11] | Yang Z, Hao D, Che Y et al 2018 Chin. Phys. B 27 018704 | Mutation-induced spatial differences in neuraminidase structure and sensitivity to neuraminidase inhibitors
[12] | Kong J Y, Li J C, Lu J J et al 2019 Phys. Rev. E 100 052409 | Role of substrate-product frustration on enzyme functional dynamics
[13] | Porter C T, Barlett G J and Thornton J M 2004 Nucl. Acids Res. 32 D129 | The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data
[14] | Lu H P 2014 Chem. Soc. Rev. 43 1118 | Sizing up single-molecule enzymatic conformational dynamics
[15] | Pelz B, Žoldák G, Zeller F et al 2016 Nat. Commun. 7 10848 | Subnanometre enzyme mechanics probed by single-molecule force spectroscopy
[16] | Hanson J A, Duderstadt K, Watkins L P et al 2007 Proc. Natl. Acad. Sci. USA 104 18055 | Illuminating the mechanistic roles of enzyme conformational dynamics
[17] | Guo J and Zhou H X 2016 Chem. Rev. 116 6503 | Protein Allostery and Conformational Dynamics
[18] | Hammes-Schiffer S and Benkovic S J 2006 Annu. Rev. Biochem. 75 519 | Relating Protein Motion to Catalysis
[19] | Ma B and Nussinov R 2010 Curr. Opin. Chem. Biol. 14 652 | Enzyme dynamics point to stepwise conformational selection in catalysis
[20] | Henzler-Wildman K A, Lei M, Thai V et al 2007 Nature 450 913 | A hierarchy of timescales in protein dynamics is linked to enzyme catalysis
[21] | Li W, Wolynes P G and Takada S 2011 Proc. Natl. Acad. Sci. USA 108 3504 | Frustration, specific sequence dependence, and nonlinearity in large-amplitude fluctuations of allosteric proteins
[22] | Yang L W and Bahar I 2005 Structure 13 893 | Coupling between Catalytic Site and Collective Dynamics: A Requirement for Mechanochemical Activity of Enzymes
[23] | Fajardo J E and Fiser A 2013 BMC Bioinform. 14 63 | Protein structure based prediction of catalytic residues
[24] | Bartlett G T, Porter C T, Borkakoti N et al 2002 J. Mol. Biol. 324 105 | Analysis of Catalytic Residues in Enzyme Active Sites
[25] | Sankararaman S, Sha F, Kirsch J F et al 2010 Bioinformatics 26 617 | Active site prediction using evolutionary and structural information
[26] | Yang L W, Liu X, Jursa C J et al 2005 Bioinformatics 21 2978 | iGNM: a database of protein functional motions based on Gaussian Network Model
[27] | Lockless S W and Ranganathan R 1999 Science 286 295 | Evolutionarily Conserved Pathways of Energetic Connectivity in Protein Families
[28] | Süel G M, Lockless S W, Wall M A et al 2003 Nat. Struct. Biol. 10 59 | Evolutionarily conserved networks of residues mediate allosteric communication in proteins
[29] | Marks D S, Hopf T A and Sander C 2012 Nat. Biotechnol. 30 1072 | Protein structure prediction from sequence variation
[30] | Hopf T A, Morinaga S, Ihara S et al 2015 Nat. Commun. 6 6077 | Amino acid coevolution reveals three-dimensional structure and functional domains of insect odorant receptors
[31] | Weigt M, White R A, Szurmant H et al 2009 Proc. Natl. Acad. Sci. USA 106 67 | Identification of direct residue contacts in protein-protein interaction by message passing
[32] | Tian P, Louis J M, Baber J L et al 2018 Angew. Chem. Int. Ed. 57 5674 | Co-Evolutionary Fitness Landscapes for Sequence Design
[33] | Collins J J and Carson C C 1998 Nature 393 409 | It's a small world
[34] | Holliday M J, Camilloni C, Armstrong G S et al 2017 Structure 25 276 | Networks of Dynamic Allostery Regulate Enzyme Function
[35] | Lee Y, Mick J, Furdui C et al 2012 PLOS ONE 7 e38114 | A Coevolutionary Residue Network at the Site of a Functionally Important Conformational Change in a Phosphohexomutase Enzyme Family
[36] | Zhu X Y, Liu Z H and Tang M 2007 Chin. Phys. Lett. 24 1118 | Epidemic Diffusion on Complex Networks
[37] | Zhu X Y and Liu Z H 2007 Chin. Phys. Lett. 24 2142 | Detrended Fluctuation Analysis of Traffic Data
[38] | Zhao Y, Jian Y, Liu Z et al 2017 Sci. Rep. 7 2876 | Network Analysis Reveals the Recognition Mechanism for Dimer Formation of Bulb-type Lectins
[39] | Xu X L, Liu C P and He D R 2016 Chin. Phys. Lett. 33 048901 | A Collaboration Network Model with Multiple Evolving Factors
[40] | Newman M E J 2010 Network (New York: Oxford University Press) |
[41] | Finn R D, Clements J and Eddy S R 2011 Nucl. Acids Res. 39 W29 | HMMER web server: interactive sequence similarity searching
[42] | Morcos F, Pagnani A, Lunt B et al 2011 Proc. Natl. Acad. Sci. USA 108 E1293 | Direct-coupling analysis of residue coevolution captures native contacts across many protein families
[43] | Sara E G, Mistry J, Bateman A et al 2019 Nucl. Acids Res. 47 D427 | The Pfam protein families database in 2019
[44] | Batagelj V and Mrvar A 2003 Graph Drawing Software ed Junger M and Mutzel P (Berlin: Springer) p 77 |
[45] | Jing H, Babu Y S, Moore D et al 1998 J. Mol. Biol. 282 1061 | Structures of native and complexed complement factor D: implications of the atypical his57 conformation and self-inhibitory loop in the regulation of specific serine protease activity
[46] | Lindqvist Y, Schneider G and Vihko P 1994 Eur. J. Biochem. 221 139 | Crystal structures of rat acid phosphatase complexed with the transition-state analogs vanadate and molybdate. Implications for the reaction mechanism
[47] | Pisliakov A V, Cao J, Kamerlin S C et al 2009 Proc. Natl. Acad. Sci. USA 106 17359 | Enzyme millisecond conformational dynamics do not catalyze the chemical step
[48] | Xie J and Lai L 2020 Curr. Opin. Struct. Biol. 62 158 | Protein topology and allostery
[49] | Li W F, Wang W and Takada S 2014 Proc. Natl. Acad. Sci. USA 111 10550 | Energy landscape views for interplays among folding, binding, and allostery of calmodulin domains