[1] | Rogalski A, Martyniuk P and Kopytko M 2017 Appl. Phys. Rev. 4 031304 | InAs/GaSb type-II superlattice infrared detectors: Future prospect
[2] | Forrai D et al 2018 Infrared Phys. & Technol. 95 164 | T2SL manufacturing capability at L3 Space & Sensors Technology Center
[3] | Fastenau J M et al 2013 Infrared Phys. & Technol. 59 158 | Sb-based IR photodetector epiwafers on 100mm GaSb substrates manufactured by MBE
[4] | Liu A W K et al 2015 Proc. SPIE 9451 94510T | SPIE Proceedings
[5] | Gin A et al 2004 Thin Solid Films 447 489 | Passivation of type II InAs/GaSb superlattice photodiodes
[6] | Lowe M J et al 2002 J. Cryst. Growth 237 196 | Extreme band bending at MBE-grown InAs(001) surfaces induced by in situ sulphur passivation
[7] | Chen G et al 2013 Appl. Phys. Lett. 103 223501 | Effect of sidewall surface recombination on the quantum efficiency in a Y 2 O 3 passivated gated type-II InAs/GaSb long-infrared photodetector array
[8] | Dixon P et al 2009 Proc. SPIE 7307 730706 | SPIE Proceedings
[9] | Wollrab R et al 2011 J. Electron. Mater. 40 1618 | Planar n-on-p HgCdTe FPAs for LWIR and VLWIR Applications
[10] | Shtrichman I et al 2007 Proc. SPIE 6542 65423M | SPIE Proceedings
[11] | Rajavel R et al 2009 Proc. SPIE 7298 72981S | SPIE Proceedings
[12] | Bogdanov S 2014 PhD Dissertation (Evanston: Northwestern University) |
[13] | Huang Y et al 2017 IEEE J. Quantum Electron. 53 2740121 | High-Performance Mid-Wavelength InAs/GaSb Superlattice Infrared Detectors Grown by Production-Scale Metalorganic Chemical Vapor Deposition
[14] | Teng Y et al 2019 IEEE Photon. Technol. Lett. 31 185 | High-Performance Long-Wavelength InAs/GaSb Superlattice Detectors Grown by MOCVD
[15] | Zhao Y et al 2020 IEEE Photon. Technol. Lett. 32 19 | Optimization of Long-Wavelength InAs/GaSb Superlattice Photodiodes With Al-Free Barriers
[16] | Pitts O J et al 2012 International Conference on Indium Phosphide and Related Materials (Santa Barbara, CA, USA 27–30 August 2012) p 225 | MOCVD based zinc diffusion process for planar InP/InGaAs avalanche photodiode fabrication
[17] | Cervera C et al 2009 J. Appl. Phys. 106 033709 | Unambiguous determination of carrier concentration and mobility for InAs/GaSb superlattice photodiode optimization
[18] | Wang T et al 2019 Appl. Phys. Express 12 122009 | Planar mid-infrared InAsSb photodetector grown on GaAs substrates by MOCVD
[19] | da Cunha S F and Bougnot J 1974 Phys. Status Solidi A 22 205 | Diffusion and solubility of Zn in GaSb
[20] | Iwamura Y and Watanabe N 2000 Jpn. J. Appl. Phys. 39 5740 | InAs Planar Diode Fabricated by Zn Diffusion
[21] | Khald H, Mani H and Joullie A 1988 J. Appl. Phys. 64 4768 | Shallow diffusion of zinc into InAs and InAsSb
[22] | Nicols S P et al 2001 Physica B 308 854 | Mechanism of zinc diffusion in gallium antimonide
[23] | Schlegl T, Sulima O V and Bett A W 2004 AIP Conf. Proc. 738 396 | The Influence of Surface Preparation on Zn-Diffusion Processes in GaSb
[24] | Lyadov Y et al 2010 J. Appl. Phys. 107 053518 | Native oxides and carbon contamination removal from InAs(100) surface by molecular hydrogen flow at moderate substrate temperatures: Stoichiometric and morphological studies
[25] | van Gurp G J et al 1990 J. Appl. Phys. 67 2919 | Zn diffusion‐enhanced disordering and ordering of InGaAsP/InP quantum well structures
[26] | Ky N H et al F K 1993 J. Appl. Phys. 73 3769 | Self‐interstitial mechanism for Zn diffusion‐induced disordering of GaAs/Al x Ga 1− x As ( x =0.1−1) multiple‐quantum‐well structures
[27] | Plis E et al 2008 Appl. Phys. Lett. 93 123507 | Lateral diffusion of minority carriers in nBn based type-II InAs/GaSb strained layer superlattice detectors