[1] | Koenig S, Lopez-Diaz D, Antes J et al 2013 Nat. Photon. 7 977 | Wireless sub-THz communication system with high data rate
[2] | Kurt H, Citrin D 2005 Appl. Phys. Lett. 87 041108 | Photonic crystals for biochemical sensing in the terahertz region
[3] | Watts C M, Liu X, Padilla W J 2012 Adv. Mater. 24 OP181 | Metamaterial Electromagnetic Wave Absorbers (Adv. Mater. 23/2012)
[4] | Fan S, Li T, Zhou J et al 2017 AIP Adv. 7 115202 | Terahertz non-destructive imaging of cracks and cracking in structures of cement-based materials
[5] | Tao H, Landy N I, Bingham C M et al 2008 Opt. Express 16 7181 | A metamaterial absorber for the terahertz regime: design, fabrication and characterization
[6] | Chen H T 2012 Opt. Express 20 7165 | Interference theory of metamaterial perfect absorbers
[7] | Smith D R, Padilla W J, Vier D et al 2000 Phys. Rev. Lett. 84 4184 | Composite Medium with Simultaneously Negative Permeability and Permittivity
[8] | Zhang B, Lv L, He T et al 2015 Appl. Phys. Lett. 107 093301 | Active terahertz device based on optically controlled organometal halide perovskite
[9] | Kapoor A, Singh G 2000 J. Lightwave Technol. 18 849 | Mode classification in cylindrical dielectric waveguides
[10] | Feng L, Xu Y L, Fegadolli W S et al 2013 Nat. Mater. 12 108 | Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies
[11] | Grady N K, Heyes J E, Chowdhury D R et al 2013 Science 340 1304 | Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction
[12] | Yachmenev A, Lavrukhin D, Glinskiy I et al 2019 Opt. Eng. 59 061608 | Metallic and dielectric metasurfaces in photoconductive terahertz devices: a review
[13] | Li W, Coppens Z J, Besteiro L V et al 2015 Nat. Commun. 6 8379 | Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials
[14] | Cong L, Pitchappa P, Lee C et al 2017 Adv. Mater. 29 1700733 | Active Phase Transition via Loss Engineering in a Terahertz MEMS Metamaterial
[15] | Duan G, Schalch J, Zhao X et al 2018 Opt. Express 26 2242 | Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies
[16] | Landy N I, Sajuyigbe S, Mock J J et al 2008 Phys. Rev. Lett. 100 207402 | Perfect Metamaterial Absorber
[17] | Liu N, Mesch M, Weiss T et al 2010 Nano Lett. 10 2342 | Infrared Perfect Absorber and Its Application As Plasmonic Sensor
[18] | Wang M, Huang S Y, Hu R et al 2019 Chin. Phys. B 28 087804 | Analysis of elliptical thermal cloak based on entropy generation and entransy dissipation approach
[19] | Low T, Avouris P 2014 ACS Nano 8 1086 | Graphene Plasmonics for Terahertz to Mid-Infrared Applications
[20] | Tang X P, Yang Z Q, Shi Z J, Lan F 2016 Chin. Phys. Lett. 33 088401 | Design of a Broadband E-Plane Power Combiner Based on Quarter-Arc Bent Rectangular Waveguides for Sub-THz and THz Wave
[21] | Wang B X, Wang G Z 2018 Plasmonics 13 123 | New Type Design of the Triple-Band and Five-Band Metamaterial Absorbers at Terahertz Frequency
[22] | Islam M R, Kabir M F, Talha K M A et al 2020 Opt. Eng. 59 016113 | Highly birefringent honeycomb cladding terahertz fiber for polarization-maintaining applications
[23] | Paulish A, Gusachenko A, Morozov A et al 2019 Opt. Eng. 59 061612 | Characterization of tetraaminediphenyl-based pyroelectric detector from visible to millimeter wave ranges
[24] | Fan C Z, Tian Y C, Ren P W et al 2019 Chin. Phys. B 28 076105 | Realization of THz dualband absorber with periodic cross-shaped graphene metamaterials
[25] | Liu M, Yang Q, Rifat A A et al 2019 Adv. Opt. Mater. 7 1900736 | Deeply Subwavelength Metasurface Resonators for Terahertz Wavefront Manipulation
[26] | Duan G, Schalch J, Zhao X et al 2019 Sens. Actuators A 287 21 | A survey of theoretical models for terahertz electromagnetic metamaterial absorbers
[27] | Daraei O M, Goudarzi K, Bemani M 2020 Opt. Laser Technol. 122 105853 | A tunable ultra-broadband terahertz absorber based on two layers of graphene ribbons
[28] | Zhang H, Ling F, Wang H et al 2020 Opt. Commun. 463 125394 | A water hybrid graphene metamaterial absorber with broadband absorption
[29] | Zhong Q, Wang T, Jiang X et al 2020 Opt. Commun. 458 124637 | Near-infrared multi-narrowband absorber based on plasmonic nanopillar metamaterial
[30] | Yan M Y, Sun Z C, Wu B R et al 2020 Front. Phys. 8 46 | Reflective Focusing Based on Few-Layer Gradient Metasurface Element Array
[31] | Yang P, Qin J, Schalch J, Xu J, Han T C et al 2019 Acta Phys. Sin. 68 087802 (in Chinese) | Ultrathin flexible transmission metamaterial absorber
[32] | Soheilifar, M R 2019 Optik 182 702 | The wideband optical absorber based on plasmonic metamaterials for optical sensing
[33] | Hao S B, Zhang L Z, Ma Y Y, Chen M Y et al 2019 Chin. Phys. Lett. 36 124205 | Terahertz Lens Fabricated by Natural Dolomite
[34] | Wang D T, Wang X C, Zhang X, Yuan H R et al 2020 Chin. Phys. Lett. 37 045201 | Tunable Dielectric Properties of Carbon Nanotube@Polypyrrole Core-Shell Hybrids by the Shell Thickness for Electromagnetic Wave Absorption *
[35] | Li S H, Li J S 2019 Chin. Phys. B 28 094210 | Pancharatnam–Berry metasurface for terahertz wave radar cross section reduction
[36] | Xie Y M, Liu C Y, Ding Z J et al 2016 Chin. Phys. Lett. 33 094208 | Optimization Design of Electromagnetic Nihility Nanoparticles
[37] | Zhao J, Zhang J, Qin C et al 2016 Chin. Phys. Lett. 33 027801 | Structural Design and Experiment of Narrow-Band Response GaAlAs Photocathodes
[38] | Wang C F, Li Q S, Wang J S et al 2016 Chin. Phys. Lett. 33 076802 | White Light Emission from ZnS:Mn Thin Films Deposited on GaN Substrates by Pulsed Laser Deposition
[39] | Wang L, Song W, Hu W, Li G, Luo X et al 2019 Chin. Phys. B 28 018503 | Efficiency enhancement of ultraviolet light-emitting diodes with segmentally graded p-type AlGaN layer
[40] | Meng X Q, Chen S L, Fang Y Z, Kou J L 2019 Chin. Phys. B 28 078101 | Annealing-enhanced interlayer coupling interaction in GaS/MoS 2 heterojunctions
[41] | Wang W M, Zhang L L, Li Y T, Sheng Z M, Zhang J 2018 Acta Phys. Sin. 67 124202 (in Chinese) | Theoretical and experimental studies on terahertz radiation from laser-driven air plasma
[42] | Liu C, Ooi Y K, Islam S, Xing H, Jena D and Zhang J 2018 Appl. Phys. Lett. 112 011101 | 234 nm and 246 nm AlN-Delta-GaN quantum well deep ultraviolet light-emitting diodes
[43] | Lu X H, Jing C B, Wang L W et al 2019 Chin. Phys. Lett. 36 098501 | An Improved Room-Temperature Silicon Terahertz Photodetector on Sapphire Substrates
[44] | Cheng X T and Liang X G 2017 Chin. Phys. B 26 120505 | Role of entropy generation minimization in thermal optimization
[45] | Xia G, Kou W, Yang L and Du Y C 2017 Chin. Phys. B 26 104403 | Two-dimensional thermal illusion device with arbitrary shape based on complementary media
[46] | Jiang S L, Li X F, Su R F, Jia X Q et al 2017 Chin. Phys. Lett. 34 090701 | Terahertz Direct Detectors Based on Superconducting Hot Electron Bolometers with Microwave Biasing