Tuning of Magnetic Properties of α-RuCl3 Single Crystal by Cr Doping

Funds: *Supported by the Fundamental Research Funds for the Central Universities and the Research Funds of Renmin University of China (Grant Nos. 15XNLQ07, 18XNLG14, and 19XNLG17).
  • Received Date: January 20, 2020
  • Published Date: May 31, 2020
  • We study the influence of Cr doping on magnetic properties of α-RuCl3 single crystals in detail. With increasing Cr content, the c-axial lattice parameter increases gradually, implying that the Cr doping may weaken the interlayer interactions. The magnetism of Ru1xCrxCl3 single crystals evolves from a long-range AFM order to a possible spin-glass state with Cr doping. The appearance of a possible spin-glass state can be explained by the introduction of FM interaction by Cr3+ ions, which competes with the AFM interaction between Ru3+ ions. Moreover, the larger magnetic moment of Cr3+ ion with S=3/2 than Ru3+ ion with Jeff=1/2 also results in a monotonic increase of the effective moment of Ru1xCrxCl3 single crystal.
  • Article Text

  • [1]
    Huang B et al. 2017 Nature 546 270 doi: 10.1038/nature22391

    CrossRef Google Scholar

    [2]
    Banerjee A et al. 2016 Nat. Mater. 15 733 doi: 10.1038/nmat4604

    CrossRef Google Scholar

    [3]
    Haraguchi Y et al. 2017 Inorg. Chem. 56 3483 doi: 10.1021/acs.inorgchem.6b03028

    CrossRef Google Scholar

    [4]
    Kubota Y et al. 2015 Phys. Rev. B 91 094422 doi: 10.1103/PhysRevB.91.094422

    CrossRef Google Scholar

    [5]
    Sandilands L J et al. 2016 Phys. Rev. B 93 075144 doi: 10.1103/PhysRevB.93.075144

    CrossRef Google Scholar

    [6]
    Banerjee A et al. 2017 Science 356 1055 doi: 10.1126/science.aah6015

    CrossRef Google Scholar

    [7]
    Kitaev A 2006 Ann. Phys. 321 2 doi: 10.1016/j.aop.2005.10.005

    CrossRef Google Scholar

    [8]
    Sears J A et al. 2015 Phys. Rev. B 91 144420 doi: 10.1103/PhysRevB.91.144420

    CrossRef Google Scholar

    [9]
    Johnson R D et al. 2015 Phys. Rev. B 92 235119 doi: 10.1103/PhysRevB.92.235119

    CrossRef Google Scholar

    [10]
    Cao H B et al. 2016 Phys. Rev. B 93 134423 doi: 10.1103/PhysRevB.93.134423

    CrossRef Google Scholar

    [11]
    Baek S H et al. 2017 Phys. Rev. Lett. 119 037201 doi: 10.1103/PhysRevLett.119.037201

    CrossRef Google Scholar

    [12]
    Sears J A et al. 2017 Phys. Rev. B 95 180411R doi: 10.1103/PhysRevB.95.180411

    CrossRef Google Scholar

    [13]
    Zheng J et al. 2017 Phys. Rev. Lett. 119 227208 doi: 10.1103/PhysRevLett.119.227208

    CrossRef Google Scholar

    [14]
    Hentrich R, Wolter A U B, Zotos X, Brenig W, Nowak D, Isaeva A, Doert T, Banerjee A, Lampen-Kelley P, Mandrus D G, Nagler S E, Sears J, Kim Y J, Büchner B and Hess C 2018 Phys. Rev. Lett. 120 117204 doi: 10.1103/PhysRevLett.120.117204

    CrossRef Google Scholar

    [15]
    Bastien G, Garbarino G, Yadav R, Martinez-Casado F J, Beltrán Rodríguez R, Stahl Q, Kusch M, Limandri S P, Ray R, Lampen-Kelley P, Mandrus D G, Nagler S E, Roslova M, Isaeva A, Doert T, Hozoi L, Wolter A U B, Büchner B, Geck J and Van Den Brink J 2018 Phys. Rev. B 97 241108 doi: 10.1103/PhysRevB.97.241108

    CrossRef Google Scholar

    [16]
    Wang Z, Guo J, Tafti F F, Hegg A, Sen S, Sidorov V A, Wang L, Cai S, Yi W, Zhou Y, Wang H, Zhang S, Yang K, Li A, Li X, Li Y, Liu J, Shi Y, Ku W, Wu Q, Cava R J and Sun L 2018 Phys. Rev. B 97 245149 doi: 10.1103/PhysRevB.97.245149

    CrossRef Google Scholar

    [17]
    Lei H C, Yin W G, Zhong Z and Hosono H 2014 Phys. Rev. B 89 020409R doi: 10.1103/PhysRevB.89.020409

    CrossRef Google Scholar

    [18]
    Manni S, Tokiwa Y and Gegenwart P 2014 Phys. Rev. B 89 241102 doi: 10.1103/PhysRevB.89.241102

    CrossRef Google Scholar

    [19]
    Mehlawat K, Sharma G and Singh Y 2015 Phys. Rev. B 92 134412 doi: 10.1103/PhysRevB.92.134412

    CrossRef Google Scholar

    [20]
    Lampen-Kelley P, Banerjee A, Aczel A A, Cao H B, Stone M B, Bridges C A, Yan J Q, Nagler S E and Mandrus D 2017 Phys. Rev. Lett. 119 237203 doi: 10.1103/PhysRevLett.119.237203

    CrossRef Google Scholar

    [21]
    Do S H, Lee W J, Lee S, Choi Y S, Lee K J, Gorbunov D I, Wosnitza J, Suh B J and Choi K Y 2018 Phys. Rev. B 98 014407 doi: 10.1103/PhysRevB.98.014407

    CrossRef Google Scholar

    [22]
    Shannon R D 1976 Acta Crystallogr. A 32 751 doi: 10.1107/S0567739476001551

    CrossRef Google Scholar

    [23]
    McGuire M A, Clark G, K C S, Chance W M, Jellison Jr. G E, Cooper V R, Xu X and Sales B C 2017 Phys. Rev. Mater. 1 014001 doi: 10.1103/PhysRevMaterials.1.014001

    CrossRef Google Scholar

    [24]
    Majumder M, Schmidt M, Rosner H, Tsirlin A A, Yasuoka H and Baenitz M 2015 Phys. Rev. B 91 180401 doi: 10.1103/PhysRevB.91.180401

    CrossRef Google Scholar

    [25]
    Binder K and Young A P 1986 Rev. Mod. Phys. 58 801 doi: 10.1103/RevModPhys.58.801

    CrossRef Google Scholar

    [26]
    Tang Y k, Sun Y and Cheng Z h 2006 Phys. Rev. B 73 012409 doi: 10.1103/PhysRevB.73.012409

    CrossRef Google Scholar

    [27]
    Lei H C, Abeykoon M, Bozin E S and Petrovic C 2011 Phys. Rev. B 83 180503R doi: 10.1103/PhysRevB.83.180503

    CrossRef Google Scholar

    [28]
    Tian J, Ivanovski V N, Szalda D, Lei H, Wang A, Liu Y, Zhang W, Koteski V and Petrovic C 2019 Inorg. Chem. 58 3107 doi: 10.1021/acs.inorgchem.8b03089

    CrossRef Google Scholar

Catalog

    Article views (364) PDF downloads (603) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return