[1] | Wojtecki R J, Meador M A and Rowan S J 2011 Nat. Mater. 10 14 | Using the dynamic bond to access macroscopically responsive structurally dynamic polymers
[2] | Lehn J M 2015 Angew. Chem. Int. Ed. 54 3276 | Perspectives in Chemistry-Aspects of Adaptive Chemistry and Materials
[3] | Lutz J F, Lehn J M, Meijer E W and Matyjaszewski K 2016 Nat. Rev. Mater. 1 16024 | From precision polymers to complex materials and systems
[4] | Zou W, Dong J, Luo Y, Zhao Q and Xie T 2017 Adv. Mater. 29 1606100 | Dynamic Covalent Polymer Networks: from Old Chemistry to Modern Day Innovations
[5] | Chang B, Zhang M, Qing G and Sun T 2015 Small 11 1097 | Dynamic Biointerfaces: From Recognition to Function
[6] | Ni C, Zha D, Ye H, Hai Y, Zhou Y, Anslyn E V and You L 2018 Angew. Chem. 130 1314 | Dynamic Covalent Chemistry within Biphenyl Scaffolds: Reversible Covalent Bonding, Control of Selectivity, and Chirality Sensing with a Single System
[7] | Ramström O and Lehn J M 2002 Nat. Rev. Drug Disc. 1 26 | Drug discovery by dynamic combinatorial libraries
[8] | Stuart M A C, Huck W T S, Genzer J et al 2010 Nat. Mater. 9 101 | Emerging applications of stimuli-responsive polymer materials
[9] | Jin Y, Yu C, Denman R J and Zhang W 2013 Chem. Soc. Rev. 42 6634 | Recent advances in dynamic covalent chemistry
[10] | Ong W J and Swager T M 2018 Nat. Chem. 10 1023 | Dynamic self-correcting nucleophilic aromatic substitution
[11] | Belowich M E and Stoddart J F 2012 Chem. Soc. Rev. 41 2003 | Dynamic imine chemistry
[12] | Black S P, Sanders J K M and Stefankiewicz A R 2014 Chem. Soc. Rev. 43 1861 | Disulfide exchange: exposing supramolecular reactivity through dynamic covalent chemistry
[13] | Tauk L, Schröder A P, Decher G and Giuseppone N 2009 Nat. Chem. 1 649 | Hierarchical functional gradients of pH-responsive self-assembled monolayers using dynamic covalent chemistry on surfaces
[14] | Cacciapaglia R, Di Stefano S and Mandolini L 2005 J. Am. Chem. Soc. 127 13666 | Metathesis Reaction of Formaldehyde Acetals: An Easy Entry into the Dynamic Covalent Chemistry of Cyclophane Formation
[15] | Lu Y X, Tournilhac F, Leibler L and Guan Z 2012 J. Am. Chem. Soc. 134 8424 | Making Insoluble Polymer Networks Malleable via Olefin Metathesis
[16] | Wang Q, Yu C, Zhang C, Long H, Azarnoush S, Jin Y and Zhang W 2016 Chem. Sci. 7 3370 | Dynamic covalent synthesis of aryleneethynylene cages through alkyne metathesis: dimer, tetramer, or interlocked complex?
[17] | Lerf A, He H, Forster M and Klinowski J 1998 J. Phys. Chem. B 102 4477 | Structure of Graphite Oxide Revisited ‖
[18] | Cai W W, Piner R D, Stadermann F J et al 2008 Science 321 1815 | Synthesis and Solid-State NMR Structural Characterization of 13C-Labeled Graphite Oxide
[19] | Yang J, Shi G, Tu Y and Fang H 2014 Angew. Chem. Int. Ed. 53 10190 | High Correlation between Oxidation Loci on Graphene Oxide
[20] | Berkesi O, Josepovits K, Sanakis Y, Petridis D and Dékány I 2006 Chem. Mater. 18 2740 | Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides
[21] | Fu W Y, Jiang L, van Geest E P, Lima L M C and Schneider G F 2017 Adv. Mater. 29 1603610 | Sensing at the Surface of Graphene Field-Effect Transistors
[22] | Liu Y, Dong X and Chen P 2012 Chem. Soc. Rev. 41 2283 | Biological and chemical sensors based on graphene materials
[23] | Morales-Narváez E and Merkoçci A 2018 Adv. Mater. 31 1805043 | Graphene Oxide as an Optical Biosensing Platform: A Progress Report
[24] | Loh K P, Bao Q, Eda G and Chhowalla M 2010 Nat. Chem. 2 1015 | Graphene oxide as a chemically tunable platform for optical applications
[25] | Deng D, Novoselov K S, Fu Q, Zheng N, Tian Z and Bao X 2016 Nat. Nanotechnol. 11 218 | Catalysis with two-dimensional materials and their heterostructures
[26] | Gu Z J, Zhu S, Yan L, Zhao F and Zhao Y L 2019 Adv. Mater. 31 27 1800662 | Graphene-Based Smart Platforms for Combined Cancer Therapy
[27] | Kostarelos K 2016 Nat. Rev. Mater. 1 16084 | Translating graphene and 2D materials into medicine
[28] | Tu Y, Lv M, Xiu P et al 2013 Nat. Nanotechnol. 8 594 | Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets
[29] | Bitounis D, Ali-Boucetta H, Hong B H, Min D H and Kostarelos K 2013 Adv. Mater. 25 2258 | Prospects and Challenges of Graphene in Biomedical Applications
[30] | Chen L, Shi G S, Shen J et al 2017 Nature 550 380 | Ion sieving in graphene oxide membranes via cationic control of interlayer spacing
[31] | Vlassiouk I V 2017 Nat. Nanotechnol. 12 1022 | A scalable graphene-based membrane
[32] | Yu X, Cheng H, Zhang M, Zhao Y, Qu L and Shi G 2017 Nat. Rev. Mater. 2 17046 | Graphene-based smart materials
[33] | Novoselov K S, Falko V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 Nature 490 192 | A roadmap for graphene
[34] | Kumar P V, Bardhan N M, Tongay S, Wu J, Belcher A M and Grossman J C 2014 Nat. Chem. 6 151 | Scalable enhancement of graphene oxide properties by thermally driven phase transformation
[35] | Kim S, Zhou S, Hu Y et al 2012 Nat. Mater. 11 544 | Room-temperature metastability of multilayer graphene oxide films
[36] | Erickson K, Erni R, Lee Z, Alem N, Gannett W and Zettl A 2010 Adv. Mater. 22 4467 | Determination of the Local Chemical Structure of Graphene Oxide and Reduced Graphene Oxide
[37] | Suresh S J and Naik V M 2000 J. Chem. Phys. 113 9727 | Hydrogen bond thermodynamic properties of water from dielectric constant data
[38] | Hummers W S and Offeman R E 1958 J. Am. Chem. Soc. 80 1339 | Preparation of Graphitic Oxide
[39] | Xu Y, Bai H, Lu G, Li C and Shi G 2008 J. Am. Chem. Soc. 130 5856 | Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets
[40] | Pan D, Wang S, Zhao B, Wu M, Zhang H, Wang Y and Jiao Z 2009 Chem. Mater. 21 3136 | Li Storage Properties of Disordered Graphene Nanosheets
[41] | Dikin D A, Stankovich S, Zimney E J, Piner R D, Dommett G H B, Evmenenko G, Nguyen S T and Ruoff R S 2007 Nature 448 457 | Preparation and characterization of graphene oxide paper
[42] | Hontoria-Lucas C, López-Peinado A J, López-González D, Rojas-Cervantes M L and Martín-Aranda R M 1995 Carbon 33 1585 | Study of oxygen-containing groups in a series of graphite oxides: Physical and chemical characterization
[43] | Acik M, Lee G, Mattevi C, Pirkle A, Wallace R M, Chhowalla M, Cho K and Chabal Y 2011 J. Phys. Chem. C 115 19761 | The Role of Oxygen during Thermal Reduction of Graphene Oxide Studied by Infrared Absorption Spectroscopy
[44] | Mathlouthi M, Seuvre A M and Koenig J L 1986 Carbohydr. Res. 146 1 | F.T.-I.R. and laser-raman spectra of cytosine and cytidine
[45] | Kostarelos K and Novoselov K S 2014 Nat. Nanotechnol. 9 744 | Graphene devices for life
[46] | Porro S, Accornero E, Pirri C F and Ricciardi C 2015 Carbon 85 383 | Memristive devices based on graphene oxide
[47] | Kim S K, Kim J Y, Jang B C, Cho M S, Choi S Y, Lee J Y and Jeong H Y 2016 Adv. Funct. Mater. 26 7406 | Conductive Graphitic Channel in Graphene Oxide-Based Memristive Devices
[48] | Liu J, Yin Z, Cao X, Zhao F, Wang L, Huang W and Zhang H 2013 Adv. Mater. 25 233 | Fabrication of Flexible, All-Reduced Graphene Oxide Non-Volatile Memory Devices