[1] | Engel G S, Calhoun T R, Read E L, Ahn T K, Mancal T, Cheng Y C, Blankenship R E and Fleming G R 2007 Nature 446 782 | Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems
[2] | Panitchayangkoon G, Hayes D, Fransted K A, Caram J R, Harel E, Wen J, Blankenship R E and Engel G S 2010 Proc. Natl. Acad. Sci. USA 107 12766 | Long-lived quantum coherence in photosynthetic complexes at physiological temperature
[3] | Collini E, Wong C Y, Wilk K E, Curmi P M C, Brumer P and Scholes G D 2010 Nature 463 644 | Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature
[4] | Wong C Y, Alvey R M, Turner D B, Wilk K E, Bryant D A, Curmi P M G, Silbey R J and Scholes G D 2012 Nat. Chem. 4 396 | Electronic coherence lineshapes reveal hidden excitonic correlations in photosynthetic light harvesting
[5] | Fenna R E and Matthews B W 1975 Nature 258 573 | Chlorophyll arrangement in a bacteriochlorophyll protein from Chlorobium limicola
[6] | Plenio M B and Huelga S F 2008 New J. Phys. 10 113019 | Dephasing-assisted transport: quantum networks and biomolecules
[7] | Mohseni M, Rebentrost P, Lloyd S and Aspuru-Guzik A 2008 J. Chem. Phys. 129 174106 | Environment-assisted quantum walks in photosynthetic energy transfer
[8] | Hoyer S, Sarovar M and Whaley K B 2010 New J. Phys. 12 065041 | Limits of quantum speedup in photosynthetic light harvesting
[9] | Caruso F, Chin A W, Datta A, Huelga S F and Plenio M B 2009 J. Chem. Phys. 131 105106 | Highly efficient energy excitation transfer in light-harvesting complexes: The fundamental role of noise-assisted transport
[10] | Chin A W, Datta A, Caruso F, Huelga S F and Plenio M B 2010 New J. Phys. 12 065002 | Noise-assisted energy transfer in quantum networks and light-harvesting complexes
[11] | Cheng Y C and Silbey R J 2006 Phys. Rev. Lett. 96 028103 | Coherence in the B800 Ring of Purple Bacteria LH2
[12] | Zong X L, Song W, Zhou J, Yang M, Yu L B and Cao Z L 2018 Quantum Inf. Process. 17 158 | Enhancing the absorption and energy transfer process via quantum entanglement
[13] | Cao J S 1997 J. Chem. Phys. 107 3204 | A phase-space study of Bloch–Redfield theory
[14] | Wu J L, Liu F, Shen Y, Cao J S and Silbey R J 2010 New J. Phys. 12 105012 | Efficient energy transfer in light-harvesting systems, I: optimal temperature, reorganization energy and spatial–temporal correlations
[15] | Ye J, Sun K, Zhao Y, Yu Y, Lee C K and Cao J S 2012 J. Chem. Phys. 136 245104 | Excitonic energy transfer in light-harvesting complexes in purple bacteria
[16] | Piilo J, Maniscalco S, Harkonen K and Suominen K A 2008 Phys. Rev. Lett. 100 180402 | Non-Markovian Quantum Jumps
[17] | Piilo J, Harkonen K, Maniscalco S and Suominen K A 2009 Phys. Rev. A 79 062112 | Open system dynamics with non-Markovian quantum jumps
[18] | Rebentrost P, Chakraborty R and Aspuru-Guzik A 2009 J. Chem. Phys. 131 184102 | Non-Markovian quantum jumps in excitonic energy transfer
[19] | Prior J, Chin A W, Huelga S F and Plenio M B 2010 Phys. Rev. Lett. 105 050404 | Efficient Simulation of Strong System-Environment Interactions
[20] | Tanimura Y 2006 J. Phys. Soc. Jpn. 75 082001 | Stochastic Liouville, Langevin, Fokker–Planck, and Master Equation Approaches to Quantum Dissipative Systems
[21] | Ishizaki A and Fleming G R 2009 J. Chem. Phys. 130 234111 | Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: Reduced hierarchy equation approach
[22] | Wang J, Wiseman H M and Milburn G J 2005 Phys. Rev. A 71 042309 | Dynamical creation of entanglement by homodyne-mediated feedback
[23] | Carvalho A R R and Hope J J 2007 Phys. Rev. A 76 010301 | Stabilizing entanglement by quantum-jump-based feedback
[24] | Hou S C, Huang X L and Yi X X 2010 Phys. Rev. A 82 012336 | Suppressing decoherence and improving entanglement by quantum-jump-based feedback control in two-level systems
[25] | Wiseman H M 1994 Phys. Rev. A 49 2133 | Quantum theory of continuous feedback
[26] | Tronrud D E, Wen J, Gay L and Blankenship R E 2009 Photosynth. Res. 100 79 | The structural basis for the difference in absorbance spectra for the FMO antenna protein from various green sulfur bacteria
[27] | Adolphs J and Renger T 2006 Biophys. J. 91 2778 | How Proteins Trigger Excitation Energy Transfer in the FMO Complex of Green Sulfur Bacteria
[28] | Olaya-Castro A, Lee C F, Fassioli-Olsen F and Johnson N F 2008 Phys. Rev. B 78 085115 | Efficiency of energy transfer in a light-harvesting system under quantum coherence
[29] | Wang B X, Tao M J, Ai Q, Xin T, Lambert N, Ruan D, Cheng Y C, Nori F, Deng F G and Long G L 2018 npj Quantum Inf. 4 52 | Efficient quantum simulation of photosynthetic light harvesting
[30] | Mahdian M and Yeganeh H D 2019 arXiv:1901.03118 [quant-ph] | Quantum simulation of Fenna-Matthew-Olson(FMO) complex on a nuclear magnetic resonance(NMR) quantum computer