[1] | Bundy F P, Hall H T, Strong H M and Wentorf Jun R H 1955 Nature 176 51 | Man-Made Diamonds
[2] | Palyanov Y N, Kupriyanov I N, Khokhryakov A F and Ralchenko V G 2015 Handbook of Crystal Growth (Boston: Elsevier) chap 17 p 671 |
[3] | Eversole W G 1960 US Patent No. 3030187 |
[4] | Bovenkerk H P, Bundy F P, Hall H T, Strong H M and Wentorf R H 1959 Nature 184 1094 | Preparation of Diamond
[5] | Wakatsuki M 1966 Jpn. J. Appl. Phys. 5 337 | New Catalysts for Synthesis of Diamond
[6] | Bundy F P, Bovenkerk H P, Strong H M and Jr. R H W 1961 J. Chem. Phys. 35 383 | Diamond‐Graphite Equilibrium Line from Growth and Graphitization of Diamond
[7] | Kanda H, Akaishi M and Yamaoka S 1994 Appl. Phys. Lett. 65 784 | New catalysts for diamond growth under high pressure and high temperature
[8] | Fagan A J and Luth R W 2011 Contrib. Mineral. Petrol. 161 229 | Growth of diamond in hydrous silicate melts
[9] | Palyanov Y N, Kupriyanov I N, Borzdov Y M and Surovtsev N V 2015 Sci. Rep. 5 14789 | Germanium: a new catalyst for diamond synthesis and a new optically active impurity in diamond
[10] | Palyanov Y N, Kupriyanov I N, Borzdov Y M, Khokhryakov A F and Surovtsev N V 2016 Cryst. Growth & Des. 16 3510 | High-Pressure Synthesis and Characterization of Ge-Doped Single Crystal Diamond
[11] | Akaishi M, Kanda H and Yamaoka S 1993 Science 259 1592 | Phosphorus: An Elemental Catalyst for Diamond Synthesis and Growth
[12] | Palyanov Y N, Kupriyanov I N, Sokol A G, Khokhryakov A F and Borzdov Y M 2011 Cryst. Growth & Des. 11 2599 | Diamond Growth from a Phosphorus–Carbon System at High Pressure High Temperature Conditions
[13] | Sato K and Katsura T 2001 J. Cryst. Growth 223 189 | Sulfur: a new solvent-catalyst for diamond synthesis under high-pressure and high-temperature conditions
[14] | Borzdov Y, Pal'yanov Y, Kupriyanov I, Gusev V, Khokhryakov A, Sokol A and Efremov A 2002 Diamond Relat. Mater. 11 1863 | HPHT synthesis of diamond with high nitrogen content from an Fe3N–C system
[15] | Minoru A, Hisao K and Shinobu Y 1990 Jpn. J. Appl. Phys. 29 L1172 | High Pressure Synthesis of Diamond in the Systems of Grahpite-Sulfate and Graphite-Hydroxide
[16] | Wang Y and Kanda H 1998 Diamond Relat. Mater. 7 57 | Growth of HPHT diamonds in alkali halides: Possible effects of oxygen contamination
[17] | Pal'yanov Y N, Sokol A G, Borzdov Y M, Khokhryakov A F and Sobolev N V 1999 Nature 400 417 | Diamond formation from mantle carbonate fluids
[18] | Sokol A, Palyanov Y, Pal'yanova G and Tomilenko A 2004 Geochem. Int. 42 830 |
[19] | Arima M, Nakayama K, Akaishi M, Yamaoka S and Kanda H 1993 Geology 21 968 | Crystallization of diamond from a silicate melt of kimberlite composition in high-pressure and high-temperature experiments
[20] | Akaishi M and Yamaoka S 2000 J. Cryst. Growth 209 999 | Crystallization of diamond from C–O–H fluids under high-pressure and high-temperature conditions
[21] | Sokol A G, Pal'yanov Y N, Pal'yanova G A, Khokhryakov A F and Borzdov Y M 2001 Diamond Relat. Mater. 10 2131 | Diamond and graphite crystallization from C–O–H fluids under high pressure and high temperature conditions
[22] | Yamaoka S, Kumar M D S, Kanda H and Akaishi M 2002 Diamond Relat. Mater. 11 1496 | Formation of diamond from CaCO3 in a reduced C–O–H fluid at HP–HT
[23] | Dong J, Yao Z, Yao M, Li R, Hu K, Zhu L, Wang Y, Sun H, Sundqvist B, Yang K and Liu B 2020 Phys. Rev. Lett. 124 065701 | Decompression-Induced Diamond Formation from Graphite Sheared under Pressure
[24] | Chen M, Shu J, Xie X, Tan D and Mao H K 2018 Proc. Natl. Acad. Sci. USA 115 2676 | Natural diamond formation by self-redox of ferromagnesian carbonate
[25] | Akaishi M, Yamaoka S, Ueda F and Ohashi T 1996 Diamond Relat. Mater. 5 2 | Synthesis of polycrystalline diamond compact with magnesium carbonate and its physical properties
[26] | Kovalenko T V and Ivakhnenko S A 2013 J. Superhard Mater. 35 131 | Properties of diamonds seed-grown in the magnesium-carbon system
[27] | Palyanov Y N, Kupriyanov I N, Khokhryakov A F and Borzdov Y M 2017 CrystEngComm 19 4459 | High-pressure crystallization and properties of diamond from magnesium-based catalysts
[28] | Palyanov Y N, Borzdov Y M, Kupriyanov I N, Khokhryakov A F and Nechaev D V 2015 CrystEngComm 17 4928 | Diamond crystallization from an Mg–C system under high pressure, high temperature conditions
[29] | Wang J K, Li S S, Wang N, Liu H J, Su T C, Hu M H, Han F, Yu K P and Ma H A 2019 Chin. Phys. Lett. 36 046101 | Synthesis and Characteristics of Type Ib Diamond Doped with NiS as an Additive
[30] | Lv S J, Hong S M, Yuan C S and Hu Y 2009 Appl. Phys. Lett. 95 242105 | Selenium and tellurium: Elemental catalysts for conversion of graphite to diamond under high pressure and temperature
[31] | Lv S J, Luo J T, Su L, Hu Y, Yuan C S and Hong S M 2009 Acta Phys. Sin. 58 6852 (in Chinese) | A slide-type multianvil ultrahigh pressure apparatus and calibrations of its pressure and temperature
[32] | Toby B 2001 J. Appl. Crystallogr. 34 210 | EXPGUI , a graphical user interface for GSAS
[33] | Powell B and Torrie B 1983 Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 39 963 | Structure of solid carbon diselenide (CSe2) at 17.5, 50 and 200K
[34] | Brazhkin V V, Popova S V and Voloshin R N 1999 Physica B 265 64 | Pressure–temperature phase diagram of molten elements: selenium, sulfur and iodine
[35] | Xu B and Tian Y 2015 J. Phys. Chem. C 119 5633 | Ultrahardness: Measurement and Enhancement
[36] | Dub S, Lytvyn P, Strelchuk V, Nikolenko A, Stubrov Y, Petrusha I, Taniguchi T and Ivakhnenko S 2017 Crystals 7 369 | Vickers Hardness of Diamond and cBN Single Crystals: AFM Approach
[37] | Wang W D, He D W, Tang M J, Li F J, Liu L and Bi Y 2012 Diamond Relat. Mater. 27 49 | Superhard composites of cubic silicon nitride and diamond
[38] | Yu H, Li S and Hu E 1994 Diamond Relat. Mater. 3 222 | Sintering of ultrafine diamond particles under high temperature and high pressure