[1] | Chen Q J, Stajic J, Tan S N and Levin K 2005 Phys. Rep. 412 1 | BCS–BEC crossover: From high temperature superconductors to ultracold superfluids
[2] | Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885 | Many-body physics with ultracold gases
[3] | Zwierlein M W, Schirotzek A, Schunck C H and Ketterle W 2006 Science 311 492 | Fermionic Superfluidity with Imbalanced Spin Populations
[4] | Partridge G B, Li W, Kamar R I, Liao Y A and Hulet R G 2006 Science 311 503 | Pairing and Phase Separation in a Polarized Fermi Gas
[5] | Chen Q J, He Y, Chien C C and Levin K 2006 Phys. Rev. A 74 063603 | Stability conditions and phase diagrams for two-component Fermi gases with population imbalance
[6] | Radzihovsky L and Sheehy D E 2010 Rep. Prog. Phys. 73 076501 | Imbalanced Feshbach-resonant Fermi gases
[7] | Yi W and Duan L M 2006 Phys. Rev. A 73 031604(R) | Trapped fermions across a Feshbach resonance with population imbalance
[8] | Pao C H, Wu S T and Yip S K 2006 Phys. Rev. B 73 132506 | Superfluid stability in the BEC-BCS crossover
[9] | Forbes M M, Gubankova E, Liu W V and Wilczek F 2005 Phys. Rev. Lett. 94 017001 | Stability Criteria for Breached-Pair Superfluidity
[10] | Chien C C, Chen Q J, He Y and Levin K 2006 Phys. Rev. Lett. 97 090402 | Intermediate-Temperature Superfluidity in an Atomic Fermi Gas with Population Imbalance
[11] | Chen Q J, He Y, Chien C C and Levin K 2007 Phys. Rev. B 75 014521 | Theory of superfluids with population imbalance: Finite-temperature and BCS-BEC crossover effects
[12] | Chen Q J, Kosztin I, Jankó B and Levin K 1999 Phys. Rev. B 59 7083 | Superconducting transitions from the pseudogap state: d -wave symmetry, lattice, and low-dimensional effects
[13] | Hofstetter W, Cirac J I, Zoller P, Demler E and Lukin M D 2002 Phys. Rev. Lett. 89 220407 | High-Temperature Superfluidity of Fermionic Atoms in Optical Lattices
[14] | Bloch I 2005 Nat. Phys. 1 23 | Ultracold quantum gases in optical lattices
[15] | Köhl M, Moritz H, Stöferle T, Günter K and Esslinger T 2005 Phys. Rev. Lett. 94 080403 | Fermionic Atoms in a Three Dimensional Optical Lattice: Observing Fermi Surfaces, Dynamics, and Interactions
[16] | Cazalilla M A, Ho A F and Giamarchi T 2005 Phys. Rev. Lett. 95 226402 | Two-Component Fermi Gas on Internal-State-Dependent Optical Lattices
[17] | Orso G, Pitaevskii L P, Stringari S and Wouters M 2005 Phys. Rev. Lett. 95 060402 | Formation of Molecules near a Feshbach Resonance in a 1D Optical Lattice
[18] | Koponen T, Kinnunen J, Martikainen J P, Jensen L M and Törmä P 2006 New J. Phys. 8 179 | Fermion pairing with spin-density imbalance in an optical lattice
[19] | Chien C C, He Y, Chen Q J and Levin K 2008 Phys. Rev. A 77 011601 | Superfuid-insulator transitions at noninteger filling in optical lattices of fermionic atoms
[20] | Giorgini S, Pitaevskii L P and Stringari S 2008 Rev. Mod. Phys. 80 1215 | Theory of ultracold atomic Fermi gases
[21] | Cai Z, Wang Y and Wu C 2011 Phys. Rev. A 83 063621 | Stable Fulde-Ferrell-Larkin-Ovchinnikov pairing states in two-dimensional and three-dimensional optical lattices
[22] | Cichy A and Micnas R 2014 Ann. Phys. 347 207 | The spin-imbalanced attractive Hubbard model in d=3: Phase diagrams and BCS–BEC crossover at low filling
[23] | Ong W, Cheng C, Arakelyan I and Thomas J E 2015 Phys. Rev. Lett. 114 110403 | Spin-Imbalanced Quasi-Two-Dimensional Fermi Gases
[24] | Kangara J, Cheng C, Pegahan S, Arakelyan I and Thomas J E 2018 Phys. Rev. Lett. 120 083203 | Atom Pairing in Optical Superlattices
[25] | An optical lattice in a theory paper in the literature often refers to a pure lattice in the context of a Hubbard model. Namely, a 1DOL means a simple 1D atomic chain. This is different from the 1DOL we study here. |
[26] | Chen Q J, Kosztin I, Jankó B and Levin K 1998 Phys. Rev. Lett. 81 4708 | Pairing Fluctuation Theory of Superconducting Properties in Underdoped to Overdoped Cuprates
[27] | Chen Q J and Wang J B 2014 Front. Phys. 9 539 | Pseudogap phenomena in ultracold atomic Fermi gases
[28] | Yu Y and Chen Q J 2010 Physica C 470 S900 | Superfluidity in atomic Fermi gases
[29] | Kinnunen J, Rodriguez M and Törmä P 2004 Science 305 1131 | Pairing Gap and In-Gap Excitations in Trapped Fermionic Superfluids
[30] | Lin G D, Yi W and Duan L M 2006 Phys. Rev. A 74 031604(R) | Superfluid shells for trapped fermions with mass and population imbalance
[31] | He L, Huang X G, Hu H and Liu X J 2013 Phys. Rev. A 87 053616 | BCS-BEC crossover at finite temperature in spin-orbit-coupled Fermi gases
[32] | Considering changing $t$ and $d$, here we define $k_{\rm F}$ and $T_{\rm F}$ as given by a homogeneous, unpolarized, noninteracting Fermi gas with the same total number density $n$ in 3D. |
[33] | Nozières P and Schmitt-Rink S 1985 J. Low Temp. Phys. 59 195 | Bose condensation in an attractive fermion gas: From weak to strong coupling superconductivity
[34] | Note that Eq. (5) depends on the product $a_0\mathit{\Delta}^2$ and the ratio $a_0/a_1$, but not on $\mathit{\Delta}$ separately. |
[35] | Che Y M, Wang J B and Chen Q J 2016 Phys. Rev. A 93 063611 | Reentrant superfluidity and pair density wave in single-component dipolar Fermi gases
[36] | Berezinskii V L 1972 Sov. Phys.-JETP 34 610 |
[37] | Kosterlitz J M and Thouless D J 1973 J. Phys. C 6 1181 | Ordering, metastability and phase transitions in two-dimensional systems