[1] | Wilczek F 2012 Phys. Rev. Lett. 109 160401 | Quantum Time Crystals
[2] | Shapere A and Wilczek F 2012 Phys. Rev. Lett. 109 160402 | Classical Time Crystals
[3] | Li T, Gong Z X, Yin Z Q, Quan H T, Yin X, Zhang P, Duan L M and Zhang X 2012 Phys. Rev. Lett. 109 163001 | Space-Time Crystals of Trapped Ions
[4] | Wilczek F 2013 Phys. Rev. Lett. 111 250402 | Superfluidity and Space-Time Translation Symmetry Breaking
[5] | Sacha K 2015 Phys. Rev. A 91 033617 | Modeling spontaneous breaking of time-translation symmetry
[6] | Else D V, Bauer B and Nayak C 2016 Phys. Rev. Lett. 117 090402 | Floquet Time Crystals
[7] | Khemani V, Lazarides A, Moessner R and Sondhi S L 2016 Phys. Rev. Lett. 116 250401 | Phase Structure of Driven Quantum Systems
[8] | Yao N Y, Potter A C, Potirniche I D and Vishwanath A 2017 Phys. Rev. Lett. 118 030401 | Discrete Time Crystals: Rigidity, Criticality, and Realizations
[9] | Syrwid A, Zakrzewski J and Sacha K 2017 Phys. Rev. Lett. 119 250602 | Time Crystal Behavior of Excited Eigenstates
[10] | Khemani V, von Keyserlingk C W and Sondhi S L 2017 Phys. Rev. B 96 115127 | Defining time crystals via representation theory
[11] | Russomanno A, Iemini F, Dalmonte M and Fazio R 2017 Phys. Rev. B 95 214307 | Floquet time crystal in the Lipkin-Meshkov-Glick model
[12] | Gong Z, Hamazaki R and Ueda M 2018 Phys. Rev. Lett. 120 040404 | Discrete Time-Crystalline Order in Cavity and Circuit QED Systems
[13] | Huang B, Wu Y H and Liu W V 2018 Phys. Rev. Lett. 120 110603 | Clean Floquet Time Crystals: Models and Realizations in Cold Atoms
[14] | Sacha K and Zakrzewski J 2018 Rep. Prog. Phys. 81 016401 | Time crystals: a review
[15] | Iemini F, Russomanno A, Keeling J, Schirò M, Dalmonte M and Fazio R 2018 Phys. Rev. Lett. 121 035301 | Boundary Time Crystals
[16] | Kozin V K and Kyriienko O 2019 Phys. Rev. Lett. 123 210602 | Quantum Time Crystals from Hamiltonians with Long-Range Interactions
[17] | Chew A, Mross D F and Alicea J 2019 arXiv:1907.12570 [cond-mat.mes-hall] | Time-crystalline Topological Superconductors
[18] | Bruno P 2013 Phys. Rev. Lett. 111 070402 | Impossibility of Spontaneously Rotating Time Crystals: A No-Go Theorem
[19] | Watanabe H and Oshikawa M 2015 Phys. Rev. Lett. 114 251603 | Absence of Quantum Time Crystals
[20] | Choi S, Landig R, Kucsko G, Zhou H, Isoya J, Jelezko F, Onoda S, Sumiya H, Khemani V, von Keyserlingk C 2017 Nature 543 221 | Observation of discrete time-crystalline order in a disordered dipolar many-body system
[21] | Zhang J, Hess P W, Kyprianidis A, Becker P, Lee A, Smith J, Pagano G, Potirniche I D, Potter A C, Vishwanath A 2017 Nature 543 217 | Observation of a discrete time crystal
[22] | Ruderman M A and Kittel C 1954 Phys. Rev. 96 99 | Indirect Exchange Coupling of Nuclear Magnetic Moments by Conduction Electrons
[23] | Kasuya T 1956 Prog. Theor. Phys. 16 45 | A Theory of Metallic Ferro- and Antiferromagnetism on Zener's Model
[24] | Yosida K 1957 Phys. Rev. 106 893 | Magnetic Properties of Cu-Mn Alloys
[25] | Kozii V and Fu L 2017 arXiv:1708.05841 [cond-mat.mes-hall] | Non-Hermitian Topological Theory of Finite-Lifetime Quasiparticles: Prediction of Bulk Fermi Arc Due to Exceptional Point
[26] | Cai Z, Schollwöck U and Pollet L 2014 Phys. Rev. Lett. 113 260403 | Identifying a Bath-Induced Bose Liquid in Interacting Spin-Boson Models
[27] | Prokof'ev N V, Svistunov B V and Tupitsyn I S 1998 Phys. Lett. A 238 253 | “Worm” algorithm in quantum Monte Carlo simulations
[28] | Mukhin S 2009 J. Supercond. Novel Magn. 22 75 | Instanton Sector of Correlated Electron Systems as the Origin of Populated Pseudo-gap and Flat “Band” Behavior: Analytic Solution
[29] | Galitski V 2010 Phys. Rev. B 82 054511 | Nonperturbative quantum dynamics of the order parameter in the BCS pairing model
[30] | DeSalvo B, Patel K, Cai G and Chin C 2019 Nature 568 61 | Observation of fermion-mediated interactions between bosonic atoms