[1] | Shor P W 1997 SIAM J. Comput. 26 1484 | Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer
[2] | Grover L K 1997 Phys. Rev. Lett. 79 325 | Quantum Mechanics Helps in Searching for a Needle in a Haystack
[3] | Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000) |
[4] | Farhi E and Gutmann S 1998 Phys. Rev. A 57 2403 | Analog analogue of a digital quantum computation
[5] | Farhi E, Goldstone J, Gutmann S and Sipser M 2000 arXiv:quant-ph/0001106v1 | Quantum Computation by Adiabatic Evolution
[6] | Aharonov D, van Dam W, Kempe J, Landau Z, Lloyd S and Regev O 2007 SIAM J. Comput. 37 166 | Adiabatic Quantum Computation is Equivalent to Standard Quantum Computation
[7] | Yu H Y, Huang Y L and Wu B 2018 Chin. Phys. Lett. 35 110303 | Exact Equivalence between Quantum Adiabatic Algorithm and Quantum Circuit Algorithm
[8] | Wu B, Yu H Y and Wilczek F 2020 Phys. Rev. A 101 012318 | Quantum independent-set problem and non-Abelian adiabatic mixing
[9] | van Dam Wim, Mosca M and Vazirani U 2002 Proceedings of the 42nd Annual Symposium on Foundations of Computer Science p. 279 | How powerful is adiabatic quantum computation?
[10] | Roland J and Cerf N J 2002 Phys. Rev. A 65 042308 | Quantum search by local adiabatic evolution
[11] | Wie C R 2019 Quantum Inf. Comput. 19 0967 |
[12] | Aaronson S and Rall P 2019 arXiv:1908.10846v2 [quant-ph] | Quantum Approximate Counting, Simplified
[13] | Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge University Press, Cambridge, 1997) |
[14] | Farhi E, Goldstone J, Gutmann S, Lapan J, Lundgren A and Preda D 2001 Science 292 472 | A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem