[1] | Dirac P A M 1982 The Principles of Quantum Mechanics (Oxford: Oxford University Press) |
[2] | Zee A 2010 Quantum Field Theory in a Nutshell (Princeton: Princeton University Press) |
[3] | Moshinsky M and Szczepaniak A 1989 J. Phys. A 22 L817 | The Dirac oscillator
[4] | Sadurní E 2010 AIP Conf. Proc. 1334 249 |
[5] | Franco-Villafa ne J A, Sadurní E, Barkhofen S, Kuhl U, Mortessagne F and Seligman T H 2013 Phys. Rev. Lett. 111 170405 | First Experimental Realization of the Dirac Oscillator
[6] | Grineviciute J and Halderson D 2012 Phys. Rev. C 85 054617 | Relativistic matrix and continuum shell model
[7] | Romera E 2011 Phys. Rev. A 84 052102 | Revivals of zitterbewegung of a bound localized Dirac particle
[8] | Bermudez A, Martin-Delgado M A and Solano E 2007 Phys. Rev. A 76 041801 | Exact mapping of the Dirac oscillator onto the Jaynes-Cummings model: Ion-trap experimental proposal
[9] | Bermudez A, Martin-Delgado M A and Solano E 2007 Phys. Rev. Lett. 99 123602 | Mesoscopic Superposition States in Relativistic Landau Levels
[10] | Lamata L, León J, Schätz T and Solano E 2007 Phys. Rev. Lett. 98 253005 | Dirac Equation and Quantum Relativistic Effects in a Single Trapped Ion
[11] | Torres J M, Sadurní E and Seligman T H 2010 AIP Conf. Proc. 1323 301 | AIP Conference Proceedings
[12] | Sadurní E, Seligman T H and Mortessagne F 2010 New J. Phys. 12 053014 | Playing relativistic billiards beyond graphene
[13] | Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89 | Comparison of quantum and semiclassical radiation theories with application to the beam maser
[14] | Greiner W and Müller B 1994 Quantum Mechanics (Symmetries) (New York: Springer) |
[15] | De Lange O L and Raab R E 1991 Operator Methods in Quantum Mechanics (Oxford: Clarendon Press) |
[16] | De Lange O L 1991 J. Phys. A 24 667 | Algebraic properties of the Dirac oscillator
[17] | Benitez J 1990 Phys. Rev. Lett. 64 1643 | Solution and hidden supersymmetry of a Dirac oscillator
[18] | Zhou J, Su H Y, Zhang F L, Zhang H B and Chen J L 2018 Chin. Phys. Lett. 35 010302 | Solving the Jaynes–Cummings Model with Shift Operators Constructed by Means of the Matrix-Diagonalizing Technique
[19] | Ge M L, Kwek L C, Liu Y, Oh C H and Wang X B 2000 Phys. Rev. A 62 052110 | Unified approach for exactly solvable potentials in quantum mechanics using shift operators
[20] | Ginocchio J N 2005 Phys. Rep. 414 165 | Relativistic symmetries in nuclei and hadrons
[21] | Ginocchio J N 2004 Phys. Rev. C 69 034318 | Relativistic harmonic oscillator with spin symmetry
[22] | Ginocchio J N 2005 Phys. Rev. Lett. 95 252501 | U(3) and Pseudo-U(3) Symmetry of the Relativistic Harmonic Oscillator
[23] | Zhang F L, Fu B and Chen J L 2008 Phys. Rev. A 78 040101 | Dynamical symmetry of Dirac hydrogen atom with spin symmetry and its connection with Ginocchio’s oscillator
[24] | Zhang F L, Song C and Chen J L 2009 Ann. Phys. 324 173 | Dynamical symmetries of two-dimensional systems in relativistic quantum mechanics
[25] | Zhang F L, Fu B and Chen J L 2009 Phys. Rev. A 80 054102 | Higgs algebraic symmetry in the two-dimensional Dirac equation
[26] | Chen J L, Liu Y and Ge M L 1998 J. Phys. A 31 6473 | Application of nonlinear deformation algebra to a physical system with Pöschl-Teller potential
[27] | Cao B X and Zhang F L 2019 arXiv:1908.09352 [quant-ph] | Analytic eigenvalue structure of the 1+1 Dirac oscillator
[28] | Moreno M and Zentella A 1989 J. Phys. A 22 L821 | Covariance, CPT and the Foldy-Wouthuysen transformation for the Dirac oscillator
[29] | Vedral V 2005 Modern Foundations of Quantum Optics (London: World Scientific Publishing Company) |
[30] | Irish E 2007 Phys. Rev. Lett. 99 173601 | Generalized Rotating-Wave Approximation for Arbitrarily Large Coupling
[31] | Lu H X and Wang X Q 2000 Chin. Phys. 9 568 | Multiphoton Jaynes-Cummings model solved via supersymmetric unitary transformation