Energy-Selective X-Ray Ghost Imaging

Funds: Supported by the Science Challenge Project (No. TZ2018005), the Civil Space Project (No. D040301-1), the National Natural Science Foundation of China (Nos. 11991073, 11721404, and 61975229), the National Key R&D Program of China (Nos. 2017YFA0403301 and 2018YFB0504302), and the Key Program of CAS (No. XDB17030500).
  • Received Date: February 12, 2020
  • Published Date: March 31, 2020
  • X-ray ghost imaging (XGI) has opened up a new avenue for damage-free medical imaging. Here energy-selective spectroscopic XGI under poor illumination is demonstrated with a single-pixel detector for the first time. The key device was a specially fabricated Au mask incorporating a new modulation pattern design, by which means images of a real object were obtained with a spatial resolution of 10 μm and a spectral energy resolution of about 1.5 keV. Compressed sensing was also introduced to improve the image quality. Our proof-of-principle experiment extends the methodology of XGI to make possible the retrieval of spectral images with only a single-pixel detector, and paves the way for potential applications in many fields such as biology, material science and environmental sensing.
  • Article Text

  • [1]
    Zhang D, Zhai Y H, Wu L A and Chen X H 2005 Opt. Lett. 30 2354 doi: 10.1364/OL.30.002354}

    CrossRef Google Scholar

    [2]
    Valencia A, Scarcelli G, D'Angelo M and Shih Y 2005 Phys. Rev. Lett. 94 063601 doi: 10.1103/PhysRevLett.94.063601}

    CrossRef Google Scholar

    [3]
    Ferri F, Magatti D, Gatti A, Bache M, Brambilla E and Lugiato L A 2005 Phys. Rev. Lett. 94 183602 doi: 10.1103/PhysRevLett.94.183602}

    CrossRef Google Scholar

    [4]
    Pittman T B, Shih Y H, Strekalov D V and Sergienko A V 1995 Phys. Rev. A 52 R3429 doi: 10.1103/PhysRevA.52.R3429}

    CrossRef Google Scholar

    [5]
    Erkmen B I and Shapiro J H 2010 Adv. Opt. Photon. 2 405 doi: 10.1364/AOP.2.000405}

    CrossRef Google Scholar

    [6]
    Shapiro J H 2008 Phys. Rev. A 78 061802 doi: 10.1103/PhysRevA.78.061802}

    CrossRef Google Scholar

    [7]
    Bromberg Y, Katz O and Silberberg Y 2009 Phys. Rev. A 79 053840 doi: 10.1103/PhysRevA.79.053840}

    CrossRef Google Scholar

    [8]
    Duarte M F, Davenport M A, Takhar D, Laska J N, Sun T, Kelly K F and Baraniuk R G 2008 IEEE Signal Process. Mag. 25 83 doi: 10.1109/MSP.2007.914730}

    CrossRef Google Scholar

    [9]
    Liu H C, Yang B, Guo Q, Shi J, Guan C, Zheng G, Mühlenbernd H, Li G, Zentgraf T and Zhang S 2017 Sci. Adv. 3 e1701477 doi: 10.1126/sciadv.1701477}

    CrossRef Google Scholar

    [10]
    Edgar M P, Gibson G M and Padgett M J 2019 Nat. Photon. 13 13 doi: 10.1038/s41566-018-0300-7}

    CrossRef Google Scholar

    [11]
    Zhang Z, Ma X and Zhong J 2015 Nat. Commun. 6 6225 doi: 10.1038/ncomms7225}

    CrossRef Google Scholar

    [12]
    Olivieri L, Totero Gongora J S, Pasquazi A and Peccianti M 2018 ACS Photon. 5 3379 doi: 10.1021/acsphotonics.8b00653}

    CrossRef Google Scholar

    [13]
    Watts C M, Shrekenhamer D, Montoya J, Lipworth G, Hunt J, Sleasman T, Krishna S, Smith D R and Padilla W J 2014 Nat. Photon. 8 605 doi: 10.1038/nphoton.2014.139}

    CrossRef Google Scholar

    [14]
    Pelliccia D, Rack A, Scheel M, Cantelli V and Paganin D M 2016 Phys. Rev. Lett. 117 113902 doi: 10.1103/PhysRevLett.117.113902}

    CrossRef Google Scholar

    [15]
    Kingston A M, Pelliccia D, Rack A, Olbinado M P, Cheng Y, Myers G R and Paganin D M 2018 Optica 5 1516 doi: 10.1364/OPTICA.5.001516}

    CrossRef Google Scholar

    [16]
    Pelliccia D, Olbinado M P, Rack A, Kingston A M, Myers G R and Paganin D M 2018 IUCrJ 5 428 doi: 10.1107/S205225251800711X}

    CrossRef Google Scholar

    [17]
    Yu H, Lu R, Han S, Xie H, Du G, Xiao T and Zhu D 2016 Phys. Rev. Lett. 117 113901 doi: 10.1103/PhysRevLett.117.113901}

    CrossRef Google Scholar

    [18]
    Schori A and Shwartz S 2017 Opt. Express 25 14822 doi: 10.1364/OE.25.014822}

    CrossRef Google Scholar

    [19]
    He Y, Zhang A, Li M, Huang Y, Quan B, Li D Z, Wu L A and Chen L M 2019 arXiv:1905.10364

    Google Scholar

    [20]
    Zhang A X, He Y H, Wu L A, Chen L M and Wang B B 2018 Optica 5 374 doi: 10.1364/OPTICA.5.000374}

    CrossRef Google Scholar

    [21]
    Sun M, Edgar M P, Phillips D B, Gibson G M and Padgett M J 2016 Opt. Express 24 10476 doi: 10.1364/OE.24.010476}

    CrossRef Google Scholar

    [22]
    Chen X H, Kong F H, Fu Q, Meng S Y and Wu L A 2017 Opt. Lett. 42 5290 doi: 10.1364/OL.42.005290}

    CrossRef Google Scholar

    [23]
    Nasrollahi K and Moeslund T B 2014 Mach. Vision Appl. 25 1423 doi: 10.1007/s00138-014-0623-4}

    CrossRef Google Scholar

    [24]
    Sun B, Edgar M P, Bowman R, Vittert L E, Welsh S, Bowman A and Padgett M J 2013 Science 340 844 doi: 10.1126/science.1234454}

    CrossRef Google Scholar

    [25]
    Sun M J, Edgar M P, Gibson G M, Sun B, Radwell N, Lamb R and Padgett M J 2016 Nat. Commun. 7 12010 doi: 10.1038/ncomms12010}

    CrossRef Google Scholar

    [26]
    Durán V, Soldevila F, Irles E, Clemente P, Tajahuerce E, Andrés P and Lancis J 2015 Opt. Express 23 14424 doi: 10.1364/OE.23.014424}

    CrossRef Google Scholar

    [27]
    Liu Z, Tan S, Wu J, Li E, Shen X and Han S 2016 Sci. Rep. 6 25718 doi: 10.1038/srep25718}

    CrossRef Google Scholar

    [28]
    Liu S, Liu Z, Wu J, Li E, Hu C, Tong Z, Shen X and Han S 2018 Opt. Express 26 17705 doi: 10.1364/OE.26.017705}

    CrossRef Google Scholar

    [29]
    Yin X, Xia Y and Duan D 2018 Opt. Express 26 18944 doi: 10.1364/OE.26.018944}

    CrossRef Google Scholar

    [30]
    Amiot C, Ryczkowski P, Friberg A T, Dudley J M and Genty G 2018 Opt. Lett. 43 5025 doi: 10.1364/OL.43.005025}

    CrossRef Google Scholar

    [31]
    Herrala E, Okkonen J T, Hyvarinen T S, Aikio M and Lammasniemi J 1994 Optical Measurements and Sensors for the Process Industries November 15 1994 Frankfurt, Germany p. 33

    Google Scholar

    [32]
    Lin X Z, Miao F, Li J Y, Dong H P, Shen Y and Chen K M 2011 J. Comput. Assist. Tomography 35 294 doi: 10.1097/rct.0b013e3182058d5c}

    CrossRef Google Scholar

    [33]
    Liu X, Yao X, Chen X, Wu L and Zhai G 2012 J. Opt. Soc. Am. A 29 1922 doi: 10.1364/JOSAA.29.001922}

    CrossRef Google Scholar

    [34]
    Huang K, Li M H, Yan W C, Guo X, Li D Z, Chen Y P, Ma Y, Zhao J R, Li Y F, Zhang J and Chen L M 2014 Rev. Sci. Instrum. 85 113304 doi: 10.1063/1.4901519}

    CrossRef Google Scholar

    [35]
    Candès E, Romberg J and Tao T 2006 IEEE Trans. Inf. Theory 52 489 doi: 10.1109/TIT.2005.862083}

    CrossRef Google Scholar

    [36]
    Katz O, Bromberg Y and Silberberg Y 2009 Appl. Phys. Lett. 95 131110 doi: 10.1063/1.3238296}

    CrossRef Google Scholar

    [37]
    Li C, Yin W, Jiang H and Zhang Y 2013 Comput. Optim. Appl. 56 507 doi: 10.1007/s10589-013-9576-1}

    CrossRef Google Scholar

    [38]
    Yu W K, Yao X R, Liu X F, Lan R M, Wu L A, Zhai G J and Zhao Q 2016 Opt. Commun. 371 105 doi: 10.1016/j.optcom.2016.03.067}

    CrossRef Google Scholar

  • Related Articles

    [1]ZHAO Sheng-Mei, DING Jian, DONG Xiao-Liang, ZHENG Bao-Yu. Ghost Imaging Using Orbital Angular Momentum [J]. Chin. Phys. Lett., 2011, 28(12): 124207. doi: 10.1088/0256-307X/28/12/124207
    [2]ZHANG Ying-Tao, HE Chen-Juan, LI Hong-Guo, WANG Kai-Ge. Novel Ghost Imaging Method for a Pure Phase Object [J]. Chin. Phys. Lett., 2008, 25(7): 2481-2484.
    [3]LIU Yan-Fang, LIU Jin-Feng, XU Peng-Shou, PAN Hai-Bin. X-Ray Photoelectron Spectroscopy and Reflection High Energy Electron Diffraction of Epitaxial Growth SiC on Si(100) Using C60 and Si [J]. Chin. Phys. Lett., 2007, 24(7): 2022-2024.
    [4]GUO Hua, HAN Shen-Sheng. Instability of Solution of Phase Retrieval in Direct Diffraction Phase-Contrast Imaging with Partially Coherent X-Ray Source [J]. Chin. Phys. Lett., 2006, 23(12): 3259-3262.
    [5]CHENG Jing, HAN Shen-Sheng. Theoretical Analysis of Quantum Noise in Ghost Imaging [J]. Chin. Phys. Lett., 2005, 22(7): 1676-1679.
    [6]SHI Yue-Jiang, WAN Bao-Nian. Energy Resolution Effects on Plasma Electron Temperature Measurements by Soft X-Ray Pulse-Height-Analysis [J]. Chin. Phys. Lett., 2001, 18(4): 562-563.
    [7]GU Yu-qiu, LI Ying-jun, LI Yu-tong, CHUNYU Shu-tai, YOU Yong-lu, HUANG Wen-zhong, HE Shao-tang, HE Ying-ling, LU Li-zhu, YUAN Xiao-dong, WEI Xiao-feng, ZHANG Chuan-fei, ZHANG Jie. Nickel-Like Molybdenum and Niobium Soft X-Ray Lasing Driven by 200 ps Laser Pulses with 50 J of Energy [J]. Chin. Phys. Lett., 1999, 16(9): 653-655.
    [8]XU Chong-ming, WU Xue-jun. Antimatter Domain and X-ray Background [J]. Chin. Phys. Lett., 1997, 14(9): 715-718.
    [9]XIA Zonghuang, LU Xiting, YAO Shude, WANG Demin, LIU Jiarui, ZHU Peiran. Ni ION INDUCED X-RAY EMISSION [J]. Chin. Phys. Lett., 1989, 6(6): 257-260.
    [10]SUN Changde. MODIFIED TAKAGIS EQUATION OF X-RAY DIFFRACTION [J]. Chin. Phys. Lett., 1988, 5(11): 505-508.

Catalog

    Article views (608) PDF downloads (718) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return