[1] | Misner C, Thorne K and Wheeler J 1973 Gravitation (San Francisco: Freeman) |
[2] | Damour T 1996 Class. Quantum Grav. 13 A33 | Testing the equivalence principle: why and how?
[3] | Capozziello S and De M 2011 Phys. Rep. 509 167 | Extended Theories of Gravity
[4] | Wagner T A, Schlamminger S, Gundlach J H and Adelberger E G 2012 Class. Quantum Grav. 29 184002 | Torsion-balance tests of the weak equivalence principle
[5] | Hofmann F and Müller J 2018 Class. Quantum Grav. 35 035015 | Relativistic tests with lunar laser ranging
[6] | Zhu L et al 2018 Phys. Rev. Lett. 121 261101 | Test of the Equivalence Principle with Chiral Masses Using a Rotating Torsion Pendulum
[7] | Touboul P et al 2017 Phys. Rev. Lett. 119 231101 | MICROSCOPE Mission: First Results of a Space Test of the Equivalence Principle
[8] | Gao F, Zhou Z B and Luo J 2011 Chin. Phys. Lett. 28 080401 | Feasibility for Testing the Equivalence Principle with Optical Readout in Space
[9] | Tino G M et al 2013 Nucl. Phys. B 243 203 | Precision Gravity Tests with Atom Interferometry in Space
[10] | Aguilera D et al 2014 Class. Quantum Grav. 31 115010 | STE-QUEST—test of the universality of free fall using cold atom interferometry
[11] | Barrett B, Laura A M, Chichet L, Battelier B, Lévèque T, Landragin A and Bouyer P 2016 Nat. Commun. 7 13786 | Dual matter-wave inertial sensors in weightlessness
[12] | Bordé C J 1989 Phys. Lett. A 140 10 | Atomic interferometry with internal state labelling
[13] | Peters A, Chung K Y and Chu S 1999 Nature 400 849 | Measurement of gravitational acceleration by dropping atoms
[14] | Zhou M K, Duan X C, Chen L L, Luo Q, Xu Y Y and Hu Z K 2015 Chin. Phys. B 24 050401 | Micro-Gal level gravity measurements with cold atom interferometry
[15] | Merlet S, Bodart Q, Malossi N, Landragin A, Santos F P D, Gitlein O and Timmen L 2010 Metrologia 47 L9 | Comparison between two mobile absolute gravimeters: optical versus atomic interferometers
[16] | Schlippert D, Hartwig J, Albers H, Richardson L L, Schubert C, Roura A, Schleich W P, Ertmer W and Rasel E M 2014 Phys. Rev. Lett. 112 203002 | Quantum Test of the Universality of Free Fall
[17] | Bonnin A, Zahzam N, Bidel Y and Bresson A 2013 Phys. Rev. A 88 043615 | Simultaneous dual-species matter-wave accelerometer
[18] | Fray S, Diez C A, Hänsch T W and Weitz M 2004 Phys. Rev. Lett. 93 240404 | Atomic Interferometer with Amplitude Gratings of Light and Its Applications to Atom Based Tests of the Equivalence Principle
[19] | Zhou L et al 2015 Phys. Rev. Lett. 115 013004 | Test of Equivalence Principle at Level by a Dual-Species Double-Diffraction Raman Atom Interferometer
[20] | Zhou L et al 2019 arXiv:1904.07096 [quant-ph] | United test of the equivalence principle at $10^{-10}$ level using mass and internal energy specified atoms
[21] | Tarallo M G, Mazzoni T, Poli N, Sutyrin D V, Zhang X and Tino G M 2014 Phys. Rev. Lett. 113 023005 | Test of Einstein Equivalence Principle for 0-Spin and Half-Integer-Spin Atoms: Search for Spin-Gravity Coupling Effects
[22] | Duan X C et al 2016 Phys. Rev. Lett. 117 023001 | Test of the Universality of Free Fall with Atoms in Different Spin Orientations
[23] | Geiger R and Trupke M 2018 Phys. Rev. Lett. 120 043602 | Proposal for a Quantum Test of the Weak Equivalence Principle with Entangled Atomic Species
[24] | Rosi G, D'Amico G, Cacciapuoti L, Sorrentino F, Prevedelli M, Zych M, Brukner C and Tino G M 2017 Nat. Commun. 8 15529 | Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states
[25] | Wang J and Zhan M S 2018 Acta Phys. Sin. 67 160402 (in Chinese) |
[26] | Hartwig J, Abend S, Schubert C, Schlippert D, Ahlers H, Posso-Trujillo K, Gaaloul N, Ertmer W and Rasel E M 2015 New J. Phys. 17 035011 | Testing the universality of free fall with rubidium and ytterbium in a very large baseline atom interferometer
[27] | Overstreet C, Asenbaum P, Kovachy T, Notermans R, Hogan J M and Kasevich M A 2018 Phys. Rev. Lett. 120 183604 | Effective Inertial Frame in an Atom Interferometric Test of the Equivalence Principle
[28] | Müller H, Chiow S, Long Q, Herrmann S and Chu S 2008 Phys. Rev. Lett. 100 180405 | Atom Interferometry with up to 24-Photon-Momentum-Transfer Beam Splitters
[29] | Müller H, Chiow S and Chu S 2008 Phys. Rev. A 77 023609 | Atom-wave diffraction between the Raman-Nath and the Bragg regime: Effective Rabi frequency, losses, and phase shifts
[30] | Altin P A et al 2013 New J. Phys. 15 023009 | Precision atomic gravimeter based on Bragg diffraction
[31] | Estey B, Yu C, Müller H, Kuan P C and Lan S Y 2015 Phys. Rev. Lett. 115 083002 | High-Resolution Atom Interferometers with Suppressed Diffraction Phases
[32] | Mazzoni T, Zhang X, Del Aguila R, Salvi L, Poli N and Tino G M 2015 Phys. Rev. A 92 053619 | Large-momentum-transfer Bragg interferometer with strontium atoms
[33] | D'Amico G, Borselli F, Cacciapuoti L, Prevedelli M, Rosi G, Sorrentino F and Tino G M 2016 Phys. Rev. A 93 063628 | Bragg interferometer for gravity gradient measurements
[34] | Hardman K S et al 2016 Phys. Rev. Lett. 117 138501 | Simultaneous Precision Gravimetry and Magnetic Gradiometry with a Bose-Einstein Condensate: A High Precision, Quantum Sensor
[35] | Parker R H, Yu C, Zhong W, Estey B and Müller H 2018 Science 360 191 | Measurement of the fine-structure constant as a test of the Standard Model
[36] | Kasevich M and Chu S 1992 Appl. Phys. B 54 321 | Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer
[37] | Sané S S, Bennetts S, Debs J E, Kuhn C C N, McDonald G D, Altin P A, Close J D and Robins N P 2012 Opt. Express 20 8915 | 11 W narrow linewidth laser source at 780nm for laser cooling and manipulation of Rubidium
[38] | Cheng Y, Zhang K, Chen L L, Xu W J, Luo Q, Zhou M K and Hu Z K 2017 AIP Adv. 7 095211 | Low-phase noise and high-power laser for Bragg atom interferometer
[39] | Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z and Luo J 2013 Phys. Rev. A 88 043610 | Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter
[40] | Kasevich M, Weiss D S, Riis E, Moler K, Kasapi S and Chu S 1991 Phys. Rev. Lett. 66 2297 | Atomic velocity selection using stimulated Raman transitions
[41] | Cheng Y, Zhang K, Chen L L, Zhang T, Xu W J, Duan X C, Zhou M K and Hu Z K 2018 Phys. Rev. A 98 043611 | Momentum-resolved detection for high-precision Bragg atom interferometry
[42] | Zhou M K, Hu Z K, Duan X C, Sun B L, Zhao J B and Luo J 2010 Phys. Rev. A 82 061602(R) | Precisely mapping the magnetic field gradient in vacuum with an atom interferometer
[43] | Gauguet A, Mehlstäubler T E, Lévèque T, Le Gouët J, Chaibi W, Canuel B, Clairon A, Santos F P D and Landragin A 2008 Phys. Rev. A 78 043615 | Off-resonant Raman transition impact in an atom interferometer
[44] | Giese E, Friedrich A, Abend S, Rasel E M and Schleich W P 2016 Phys. Rev. A 94 063619 | Light shifts in atomic Bragg diffraction
[45] | Parker R H, Yu C, Estey B, Zhong W, Huang E and Müller H 2016 Phys. Rev. A 94 053618 | Controlling the multiport nature of Bragg diffraction in atom interferometry
[46] | Zych M and Brukner C 2018 Nat. Phys. 14 1027 | Quantum formulation of the Einstein equivalence principle